Zigzag graphene nanoribbons with curved edges

Zigzag-edged single and double folded graphene nanoribbons are studied using density functional theory methods. Some asymmetric folds and folds with an octagon/hexagonal extended defect line are also considered. The long-range van der Waals interactions are taken into account viasemiempirical pairwi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:RSC advances 2013-01, Vol.3 (25), p.10014-10018
Hauptverfasser: Le, Nam B., Woods, Lilia M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Zigzag-edged single and double folded graphene nanoribbons are studied using density functional theory methods. Some asymmetric folds and folds with an octagon/hexagonal extended defect line are also considered. The long-range van der Waals interactions are taken into account viasemiempirical pairwise optimized potential. The geometrical and magnetic phases of the studied structures are obtained. It is shown that the magnetic states of the folds depend strongly on their stacking patterns. The electronic structures in terms of energy needed for the folding process, van der Waals contribution, energy band gaps, band structures, and densities of states are also calculated. We find that significant changes in the electronic structure can be achieved as a result of folding and adding line defects.
ISSN:2046-2069
2046-2069
DOI:10.1039/c3ra41870g