Effect of capillary pressure in nanobubbles on their adhesion to particles under foam flotation. Part 3

The energy possibility of the transition of free bubbles A to adherent bubbles M , or the A → M (TAM) transition, is calculated on substrates with different wetting abilities: extremely hydrophilic (Φ), extremely hydrophobic (Γ), and with incomplete wetting ability ( H x ), where x is the substrate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Russian journal of non-ferrous metals 2014-07, Vol.55 (4), p.309-317
Hauptverfasser: Melik-Gaikazyan, V. I., Emel’yanova, N. P., Dolzhenkov, D. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 317
container_issue 4
container_start_page 309
container_title Russian journal of non-ferrous metals
container_volume 55
creator Melik-Gaikazyan, V. I.
Emel’yanova, N. P.
Dolzhenkov, D. V.
description The energy possibility of the transition of free bubbles A to adherent bubbles M , or the A → M (TAM) transition, is calculated on substrates with different wetting abilities: extremely hydrophilic (Φ), extremely hydrophobic (Γ), and with incomplete wetting ability ( H x ), where x is the substrate surface fraction covered by a monolayer of collector molecules). Calculations of TAM for bubbles with a diameter ( d e ) of 2 mm to 20 nm on Φ, Γ, and H x substrates showed that the change in specific energy (Δ G / V ) in a bubble in the case of TAM depends on the value of d e , substrate wetting ability, and surface area of its contact with the bubble. According to the results of studies, high capillary pressure ( P c ) in nanobubbles M promotes their instantaneous spreading over the substrate. Herewith, P c decreases considerably. The adhesion and spreading processes occur as a single process, irreversibly, one-way, and fast, because they are not complicated by counterprocesses. Upon a decrease in equatorial diameter d e and wetting ability of the substrate, the decrease in G / V reaches several million J/m 3 . The actual simultaneity of the processes of bubble adhesion and spreading is illustrated by microphotographs of larger bubbles with a luminescent apolar reagent eliminating the effect of wetting hysteresis that is easily overcome in nanobubbles in the case of high P c values.
doi_str_mv 10.3103/S1067821214040117
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1620039970</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3432807531</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-59e435bc73045806479f51073a75b3c493d42b6e6b04c4d9c95737e39f514ab83</originalsourceid><addsrcrecordid>eNp1kE9LAzEQxYMoWKsfwFvAi5etySbZNEcp9Q8UFFTwtiTppN2yTdZk9-C3N0s9iOJpZni_N8w8hC4pmTFK2M0LJZWcl7SknHBCqTxCE6oYL5Qk78e5z3Ix6qfoLKUdIUIooSZos3QObI-Dw1Z3Tdvq-Im7CCkNEXDjsdc-mMGYFhIOHvdbaCLW6y2kZhwD7nTsGzvKg19DxC7oPXZt6HWfiRl-zjpm5-jE6TbBxXedore75evioVg93T8ubleFZVz1hVDAmTBWMsLFnFRcKicokUxLYZjliq15aSqoDOGWr5VVQjIJbKS4NnM2RdeHvV0MHwOkvt43yUL-y0MYUk2rkhCmcioZvfqF7sIQfb6upiJjUspqpOiBsjGkFMHVXWz2OaWaknqMvv4TffaUB0_KrN9A_LH5X9MX-2GD9A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1562077760</pqid></control><display><type>article</type><title>Effect of capillary pressure in nanobubbles on their adhesion to particles under foam flotation. Part 3</title><source>SpringerNature Complete Journals</source><creator>Melik-Gaikazyan, V. I. ; Emel’yanova, N. P. ; Dolzhenkov, D. V.</creator><creatorcontrib>Melik-Gaikazyan, V. I. ; Emel’yanova, N. P. ; Dolzhenkov, D. V.</creatorcontrib><description>The energy possibility of the transition of free bubbles A to adherent bubbles M , or the A → M (TAM) transition, is calculated on substrates with different wetting abilities: extremely hydrophilic (Φ), extremely hydrophobic (Γ), and with incomplete wetting ability ( H x ), where x is the substrate surface fraction covered by a monolayer of collector molecules). Calculations of TAM for bubbles with a diameter ( d e ) of 2 mm to 20 nm on Φ, Γ, and H x substrates showed that the change in specific energy (Δ G / V ) in a bubble in the case of TAM depends on the value of d e , substrate wetting ability, and surface area of its contact with the bubble. According to the results of studies, high capillary pressure ( P c ) in nanobubbles M promotes their instantaneous spreading over the substrate. Herewith, P c decreases considerably. The adhesion and spreading processes occur as a single process, irreversibly, one-way, and fast, because they are not complicated by counterprocesses. Upon a decrease in equatorial diameter d e and wetting ability of the substrate, the decrease in G / V reaches several million J/m 3 . The actual simultaneity of the processes of bubble adhesion and spreading is illustrated by microphotographs of larger bubbles with a luminescent apolar reagent eliminating the effect of wetting hysteresis that is easily overcome in nanobubbles in the case of high P c values.</description><identifier>ISSN: 1067-8212</identifier><identifier>EISSN: 1934-970X</identifier><identifier>DOI: 10.3103/S1067821214040117</identifier><language>eng</language><publisher>Heidelberg: Allerton Press</publisher><subject>Adhesion ; Bubbles ; Chemistry and Materials Science ; Materials Science ; Mathematical analysis ; Metallic Materials ; Microphotographs ; Mineral Processing of Nonferrous Metals ; Nanostructure ; Nonferrous metals ; Spreading ; Wetting</subject><ispartof>Russian journal of non-ferrous metals, 2014-07, Vol.55 (4), p.309-317</ispartof><rights>Allerton Press, Inc. 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-59e435bc73045806479f51073a75b3c493d42b6e6b04c4d9c95737e39f514ab83</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.3103/S1067821214040117$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.3103/S1067821214040117$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Melik-Gaikazyan, V. I.</creatorcontrib><creatorcontrib>Emel’yanova, N. P.</creatorcontrib><creatorcontrib>Dolzhenkov, D. V.</creatorcontrib><title>Effect of capillary pressure in nanobubbles on their adhesion to particles under foam flotation. Part 3</title><title>Russian journal of non-ferrous metals</title><addtitle>Russ. J. Non-ferrous Metals</addtitle><description>The energy possibility of the transition of free bubbles A to adherent bubbles M , or the A → M (TAM) transition, is calculated on substrates with different wetting abilities: extremely hydrophilic (Φ), extremely hydrophobic (Γ), and with incomplete wetting ability ( H x ), where x is the substrate surface fraction covered by a monolayer of collector molecules). Calculations of TAM for bubbles with a diameter ( d e ) of 2 mm to 20 nm on Φ, Γ, and H x substrates showed that the change in specific energy (Δ G / V ) in a bubble in the case of TAM depends on the value of d e , substrate wetting ability, and surface area of its contact with the bubble. According to the results of studies, high capillary pressure ( P c ) in nanobubbles M promotes their instantaneous spreading over the substrate. Herewith, P c decreases considerably. The adhesion and spreading processes occur as a single process, irreversibly, one-way, and fast, because they are not complicated by counterprocesses. Upon a decrease in equatorial diameter d e and wetting ability of the substrate, the decrease in G / V reaches several million J/m 3 . The actual simultaneity of the processes of bubble adhesion and spreading is illustrated by microphotographs of larger bubbles with a luminescent apolar reagent eliminating the effect of wetting hysteresis that is easily overcome in nanobubbles in the case of high P c values.</description><subject>Adhesion</subject><subject>Bubbles</subject><subject>Chemistry and Materials Science</subject><subject>Materials Science</subject><subject>Mathematical analysis</subject><subject>Metallic Materials</subject><subject>Microphotographs</subject><subject>Mineral Processing of Nonferrous Metals</subject><subject>Nanostructure</subject><subject>Nonferrous metals</subject><subject>Spreading</subject><subject>Wetting</subject><issn>1067-8212</issn><issn>1934-970X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LAzEQxYMoWKsfwFvAi5etySbZNEcp9Q8UFFTwtiTppN2yTdZk9-C3N0s9iOJpZni_N8w8hC4pmTFK2M0LJZWcl7SknHBCqTxCE6oYL5Qk78e5z3Ix6qfoLKUdIUIooSZos3QObI-Dw1Z3Tdvq-Im7CCkNEXDjsdc-mMGYFhIOHvdbaCLW6y2kZhwD7nTsGzvKg19DxC7oPXZt6HWfiRl-zjpm5-jE6TbBxXedore75evioVg93T8ubleFZVz1hVDAmTBWMsLFnFRcKicokUxLYZjliq15aSqoDOGWr5VVQjIJbKS4NnM2RdeHvV0MHwOkvt43yUL-y0MYUk2rkhCmcioZvfqF7sIQfb6upiJjUspqpOiBsjGkFMHVXWz2OaWaknqMvv4TffaUB0_KrN9A_LH5X9MX-2GD9A</recordid><startdate>20140701</startdate><enddate>20140701</enddate><creator>Melik-Gaikazyan, V. I.</creator><creator>Emel’yanova, N. P.</creator><creator>Dolzhenkov, D. V.</creator><general>Allerton Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20140701</creationdate><title>Effect of capillary pressure in nanobubbles on their adhesion to particles under foam flotation. Part 3</title><author>Melik-Gaikazyan, V. I. ; Emel’yanova, N. P. ; Dolzhenkov, D. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-59e435bc73045806479f51073a75b3c493d42b6e6b04c4d9c95737e39f514ab83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Adhesion</topic><topic>Bubbles</topic><topic>Chemistry and Materials Science</topic><topic>Materials Science</topic><topic>Mathematical analysis</topic><topic>Metallic Materials</topic><topic>Microphotographs</topic><topic>Mineral Processing of Nonferrous Metals</topic><topic>Nanostructure</topic><topic>Nonferrous metals</topic><topic>Spreading</topic><topic>Wetting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Melik-Gaikazyan, V. I.</creatorcontrib><creatorcontrib>Emel’yanova, N. P.</creatorcontrib><creatorcontrib>Dolzhenkov, D. V.</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Russian journal of non-ferrous metals</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Melik-Gaikazyan, V. I.</au><au>Emel’yanova, N. P.</au><au>Dolzhenkov, D. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of capillary pressure in nanobubbles on their adhesion to particles under foam flotation. Part 3</atitle><jtitle>Russian journal of non-ferrous metals</jtitle><stitle>Russ. J. Non-ferrous Metals</stitle><date>2014-07-01</date><risdate>2014</risdate><volume>55</volume><issue>4</issue><spage>309</spage><epage>317</epage><pages>309-317</pages><issn>1067-8212</issn><eissn>1934-970X</eissn><abstract>The energy possibility of the transition of free bubbles A to adherent bubbles M , or the A → M (TAM) transition, is calculated on substrates with different wetting abilities: extremely hydrophilic (Φ), extremely hydrophobic (Γ), and with incomplete wetting ability ( H x ), where x is the substrate surface fraction covered by a monolayer of collector molecules). Calculations of TAM for bubbles with a diameter ( d e ) of 2 mm to 20 nm on Φ, Γ, and H x substrates showed that the change in specific energy (Δ G / V ) in a bubble in the case of TAM depends on the value of d e , substrate wetting ability, and surface area of its contact with the bubble. According to the results of studies, high capillary pressure ( P c ) in nanobubbles M promotes their instantaneous spreading over the substrate. Herewith, P c decreases considerably. The adhesion and spreading processes occur as a single process, irreversibly, one-way, and fast, because they are not complicated by counterprocesses. Upon a decrease in equatorial diameter d e and wetting ability of the substrate, the decrease in G / V reaches several million J/m 3 . The actual simultaneity of the processes of bubble adhesion and spreading is illustrated by microphotographs of larger bubbles with a luminescent apolar reagent eliminating the effect of wetting hysteresis that is easily overcome in nanobubbles in the case of high P c values.</abstract><cop>Heidelberg</cop><pub>Allerton Press</pub><doi>10.3103/S1067821214040117</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1067-8212
ispartof Russian journal of non-ferrous metals, 2014-07, Vol.55 (4), p.309-317
issn 1067-8212
1934-970X
language eng
recordid cdi_proquest_miscellaneous_1620039970
source SpringerNature Complete Journals
subjects Adhesion
Bubbles
Chemistry and Materials Science
Materials Science
Mathematical analysis
Metallic Materials
Microphotographs
Mineral Processing of Nonferrous Metals
Nanostructure
Nonferrous metals
Spreading
Wetting
title Effect of capillary pressure in nanobubbles on their adhesion to particles under foam flotation. Part 3
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T00%3A37%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20capillary%20pressure%20in%20nanobubbles%20on%20their%20adhesion%20to%20particles%20under%20foam%20flotation.%20Part%203&rft.jtitle=Russian%20journal%20of%20non-ferrous%20metals&rft.au=Melik-Gaikazyan,%20V.%20I.&rft.date=2014-07-01&rft.volume=55&rft.issue=4&rft.spage=309&rft.epage=317&rft.pages=309-317&rft.issn=1067-8212&rft.eissn=1934-970X&rft_id=info:doi/10.3103/S1067821214040117&rft_dat=%3Cproquest_cross%3E3432807531%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1562077760&rft_id=info:pmid/&rfr_iscdi=true