Extracting Credible Dependencies for Averaged One-Dependence Estimator Analysis
Of the numerous proposals to improve the accuracy of naive Bayes (NB) by weakening the conditional independence assumption, averaged one-dependence estimator (AODE) demonstrates remarkable zero-one loss performance. However, indiscriminate superparent attributes will bring both considerable computat...
Gespeichert in:
Veröffentlicht in: | Mathematical problems in engineering 2014-01, Vol.2014 (1) |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | Mathematical problems in engineering |
container_volume | 2014 |
creator | Wang, LiMin Wang, ShuangCheng Li, XiongFei Chi, BaoRong |
description | Of the numerous proposals to improve the accuracy of naive Bayes (NB) by weakening the conditional independence assumption, averaged one-dependence estimator (AODE) demonstrates remarkable zero-one loss performance. However, indiscriminate superparent attributes will bring both considerable computational cost and negative effect on classification accuracy. In this paper, to extract the most credible dependencies we present a new type of seminaive Bayesian operation, which selects superparent attributes by building maximum weighted spanning tree and removes highly correlated children attributes by functional dependency and canonical cover analysis. Our extensive experimental comparison on UCI data sets shows that this operation efficiently identifies possible superparent attributes at training time and eliminates redundant children attributes at classification time. |
doi_str_mv | 10.1155/2014/470821 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1620039125</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1620039125</sourcerecordid><originalsourceid>FETCH-LOGICAL-c366t-84c978737275c85eb7fc61b96a9ab730c521ea93923a9bd0a83e5601abc9e2ea3</originalsourceid><addsrcrecordid>eNp90E1LwzAYB_AgCs7pyS9Q8CJKXZ6kSZqjzPkCg10UvIU0fTozunYmnbpvb0fFgwdPeSA_npc_IedAbwCEmDAK2SRTNGdwQEYgJE8FZOqwrynLUmD89ZicxLiilIGAfEQWs68uWNf5ZplMA5a-qDG5ww02JTbOY0yqNiS3HxjsEstk0WD6-4vJLHZ-bbu9aGy9iz6ekqPK1hHPft4xebmfPU8f0_ni4Wl6O08dl7JL88xplSuumBIuF1ioykkotLTaFopTJxig1VwzbnVRUptzFJKCLZxGhpaPyeXQdxPa9y3Gzqx9dFjXtsF2Gw1IRinXwERPL_7QVbsN_b69EoLlXMt-zJhcD8qFNsaAldmE_rawM0DNPlyzD9cM4fb6atBvvintp_8XfwOTDnek</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1552839692</pqid></control><display><type>article</type><title>Extracting Credible Dependencies for Averaged One-Dependence Estimator Analysis</title><source>Wiley-Blackwell Open Access Titles</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Wang, LiMin ; Wang, ShuangCheng ; Li, XiongFei ; Chi, BaoRong</creator><contributor>Xu, Yang</contributor><creatorcontrib>Wang, LiMin ; Wang, ShuangCheng ; Li, XiongFei ; Chi, BaoRong ; Xu, Yang</creatorcontrib><description>Of the numerous proposals to improve the accuracy of naive Bayes (NB) by weakening the conditional independence assumption, averaged one-dependence estimator (AODE) demonstrates remarkable zero-one loss performance. However, indiscriminate superparent attributes will bring both considerable computational cost and negative effect on classification accuracy. In this paper, to extract the most credible dependencies we present a new type of seminaive Bayesian operation, which selects superparent attributes by building maximum weighted spanning tree and removes highly correlated children attributes by functional dependency and canonical cover analysis. Our extensive experimental comparison on UCI data sets shows that this operation efficiently identifies possible superparent attributes at training time and eliminates redundant children attributes at classification time.</description><identifier>ISSN: 1024-123X</identifier><identifier>EISSN: 1563-5147</identifier><identifier>DOI: 10.1155/2014/470821</identifier><language>eng</language><publisher>New York: Hindawi Publishing Corporation</publisher><subject>Accuracy ; Advantages ; Algorithms ; Bayesian analysis ; Children ; Classification ; Computational efficiency ; Cost analysis ; Dependence ; Estimators ; Graph theory ; Laboratories ; Mathematical problems ; Time dependence</subject><ispartof>Mathematical problems in engineering, 2014-01, Vol.2014 (1)</ispartof><rights>Copyright © 2014 LiMin Wang et al.</rights><rights>Copyright © 2014 LiMin Wang et al. LiMin Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c366t-84c978737275c85eb7fc61b96a9ab730c521ea93923a9bd0a83e5601abc9e2ea3</citedby><cites>FETCH-LOGICAL-c366t-84c978737275c85eb7fc61b96a9ab730c521ea93923a9bd0a83e5601abc9e2ea3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><contributor>Xu, Yang</contributor><creatorcontrib>Wang, LiMin</creatorcontrib><creatorcontrib>Wang, ShuangCheng</creatorcontrib><creatorcontrib>Li, XiongFei</creatorcontrib><creatorcontrib>Chi, BaoRong</creatorcontrib><title>Extracting Credible Dependencies for Averaged One-Dependence Estimator Analysis</title><title>Mathematical problems in engineering</title><description>Of the numerous proposals to improve the accuracy of naive Bayes (NB) by weakening the conditional independence assumption, averaged one-dependence estimator (AODE) demonstrates remarkable zero-one loss performance. However, indiscriminate superparent attributes will bring both considerable computational cost and negative effect on classification accuracy. In this paper, to extract the most credible dependencies we present a new type of seminaive Bayesian operation, which selects superparent attributes by building maximum weighted spanning tree and removes highly correlated children attributes by functional dependency and canonical cover analysis. Our extensive experimental comparison on UCI data sets shows that this operation efficiently identifies possible superparent attributes at training time and eliminates redundant children attributes at classification time.</description><subject>Accuracy</subject><subject>Advantages</subject><subject>Algorithms</subject><subject>Bayesian analysis</subject><subject>Children</subject><subject>Classification</subject><subject>Computational efficiency</subject><subject>Cost analysis</subject><subject>Dependence</subject><subject>Estimators</subject><subject>Graph theory</subject><subject>Laboratories</subject><subject>Mathematical problems</subject><subject>Time dependence</subject><issn>1024-123X</issn><issn>1563-5147</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp90E1LwzAYB_AgCs7pyS9Q8CJKXZ6kSZqjzPkCg10UvIU0fTozunYmnbpvb0fFgwdPeSA_npc_IedAbwCEmDAK2SRTNGdwQEYgJE8FZOqwrynLUmD89ZicxLiilIGAfEQWs68uWNf5ZplMA5a-qDG5ww02JTbOY0yqNiS3HxjsEstk0WD6-4vJLHZ-bbu9aGy9iz6ekqPK1hHPft4xebmfPU8f0_ni4Wl6O08dl7JL88xplSuumBIuF1ioykkotLTaFopTJxig1VwzbnVRUptzFJKCLZxGhpaPyeXQdxPa9y3Gzqx9dFjXtsF2Gw1IRinXwERPL_7QVbsN_b69EoLlXMt-zJhcD8qFNsaAldmE_rawM0DNPlyzD9cM4fb6atBvvintp_8XfwOTDnek</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Wang, LiMin</creator><creator>Wang, ShuangCheng</creator><creator>Li, XiongFei</creator><creator>Chi, BaoRong</creator><general>Hindawi Publishing Corporation</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20140101</creationdate><title>Extracting Credible Dependencies for Averaged One-Dependence Estimator Analysis</title><author>Wang, LiMin ; Wang, ShuangCheng ; Li, XiongFei ; Chi, BaoRong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c366t-84c978737275c85eb7fc61b96a9ab730c521ea93923a9bd0a83e5601abc9e2ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Accuracy</topic><topic>Advantages</topic><topic>Algorithms</topic><topic>Bayesian analysis</topic><topic>Children</topic><topic>Classification</topic><topic>Computational efficiency</topic><topic>Cost analysis</topic><topic>Dependence</topic><topic>Estimators</topic><topic>Graph theory</topic><topic>Laboratories</topic><topic>Mathematical problems</topic><topic>Time dependence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, LiMin</creatorcontrib><creatorcontrib>Wang, ShuangCheng</creatorcontrib><creatorcontrib>Li, XiongFei</creatorcontrib><creatorcontrib>Chi, BaoRong</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Mathematical problems in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, LiMin</au><au>Wang, ShuangCheng</au><au>Li, XiongFei</au><au>Chi, BaoRong</au><au>Xu, Yang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extracting Credible Dependencies for Averaged One-Dependence Estimator Analysis</atitle><jtitle>Mathematical problems in engineering</jtitle><date>2014-01-01</date><risdate>2014</risdate><volume>2014</volume><issue>1</issue><issn>1024-123X</issn><eissn>1563-5147</eissn><abstract>Of the numerous proposals to improve the accuracy of naive Bayes (NB) by weakening the conditional independence assumption, averaged one-dependence estimator (AODE) demonstrates remarkable zero-one loss performance. However, indiscriminate superparent attributes will bring both considerable computational cost and negative effect on classification accuracy. In this paper, to extract the most credible dependencies we present a new type of seminaive Bayesian operation, which selects superparent attributes by building maximum weighted spanning tree and removes highly correlated children attributes by functional dependency and canonical cover analysis. Our extensive experimental comparison on UCI data sets shows that this operation efficiently identifies possible superparent attributes at training time and eliminates redundant children attributes at classification time.</abstract><cop>New York</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2014/470821</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1024-123X |
ispartof | Mathematical problems in engineering, 2014-01, Vol.2014 (1) |
issn | 1024-123X 1563-5147 |
language | eng |
recordid | cdi_proquest_miscellaneous_1620039125 |
source | Wiley-Blackwell Open Access Titles; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Accuracy Advantages Algorithms Bayesian analysis Children Classification Computational efficiency Cost analysis Dependence Estimators Graph theory Laboratories Mathematical problems Time dependence |
title | Extracting Credible Dependencies for Averaged One-Dependence Estimator Analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T08%3A58%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extracting%20Credible%20Dependencies%20for%20Averaged%20One-Dependence%20Estimator%20Analysis&rft.jtitle=Mathematical%20problems%20in%20engineering&rft.au=Wang,%20LiMin&rft.date=2014-01-01&rft.volume=2014&rft.issue=1&rft.issn=1024-123X&rft.eissn=1563-5147&rft_id=info:doi/10.1155/2014/470821&rft_dat=%3Cproquest_cross%3E1620039125%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1552839692&rft_id=info:pmid/&rfr_iscdi=true |