Extracting Credible Dependencies for Averaged One-Dependence Estimator Analysis

Of the numerous proposals to improve the accuracy of naive Bayes (NB) by weakening the conditional independence assumption, averaged one-dependence estimator (AODE) demonstrates remarkable zero-one loss performance. However, indiscriminate superparent attributes will bring both considerable computat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical problems in engineering 2014-01, Vol.2014 (1)
Hauptverfasser: Wang, LiMin, Wang, ShuangCheng, Li, XiongFei, Chi, BaoRong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title Mathematical problems in engineering
container_volume 2014
creator Wang, LiMin
Wang, ShuangCheng
Li, XiongFei
Chi, BaoRong
description Of the numerous proposals to improve the accuracy of naive Bayes (NB) by weakening the conditional independence assumption, averaged one-dependence estimator (AODE) demonstrates remarkable zero-one loss performance. However, indiscriminate superparent attributes will bring both considerable computational cost and negative effect on classification accuracy. In this paper, to extract the most credible dependencies we present a new type of seminaive Bayesian operation, which selects superparent attributes by building maximum weighted spanning tree and removes highly correlated children attributes by functional dependency and canonical cover analysis. Our extensive experimental comparison on UCI data sets shows that this operation efficiently identifies possible superparent attributes at training time and eliminates redundant children attributes at classification time.
doi_str_mv 10.1155/2014/470821
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1620039125</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1620039125</sourcerecordid><originalsourceid>FETCH-LOGICAL-c366t-84c978737275c85eb7fc61b96a9ab730c521ea93923a9bd0a83e5601abc9e2ea3</originalsourceid><addsrcrecordid>eNp90E1LwzAYB_AgCs7pyS9Q8CJKXZ6kSZqjzPkCg10UvIU0fTozunYmnbpvb0fFgwdPeSA_npc_IedAbwCEmDAK2SRTNGdwQEYgJE8FZOqwrynLUmD89ZicxLiilIGAfEQWs68uWNf5ZplMA5a-qDG5ww02JTbOY0yqNiS3HxjsEstk0WD6-4vJLHZ-bbu9aGy9iz6ekqPK1hHPft4xebmfPU8f0_ni4Wl6O08dl7JL88xplSuumBIuF1ioykkotLTaFopTJxig1VwzbnVRUptzFJKCLZxGhpaPyeXQdxPa9y3Gzqx9dFjXtsF2Gw1IRinXwERPL_7QVbsN_b69EoLlXMt-zJhcD8qFNsaAldmE_rawM0DNPlyzD9cM4fb6atBvvintp_8XfwOTDnek</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1552839692</pqid></control><display><type>article</type><title>Extracting Credible Dependencies for Averaged One-Dependence Estimator Analysis</title><source>Wiley-Blackwell Open Access Titles</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Wang, LiMin ; Wang, ShuangCheng ; Li, XiongFei ; Chi, BaoRong</creator><contributor>Xu, Yang</contributor><creatorcontrib>Wang, LiMin ; Wang, ShuangCheng ; Li, XiongFei ; Chi, BaoRong ; Xu, Yang</creatorcontrib><description>Of the numerous proposals to improve the accuracy of naive Bayes (NB) by weakening the conditional independence assumption, averaged one-dependence estimator (AODE) demonstrates remarkable zero-one loss performance. However, indiscriminate superparent attributes will bring both considerable computational cost and negative effect on classification accuracy. In this paper, to extract the most credible dependencies we present a new type of seminaive Bayesian operation, which selects superparent attributes by building maximum weighted spanning tree and removes highly correlated children attributes by functional dependency and canonical cover analysis. Our extensive experimental comparison on UCI data sets shows that this operation efficiently identifies possible superparent attributes at training time and eliminates redundant children attributes at classification time.</description><identifier>ISSN: 1024-123X</identifier><identifier>EISSN: 1563-5147</identifier><identifier>DOI: 10.1155/2014/470821</identifier><language>eng</language><publisher>New York: Hindawi Publishing Corporation</publisher><subject>Accuracy ; Advantages ; Algorithms ; Bayesian analysis ; Children ; Classification ; Computational efficiency ; Cost analysis ; Dependence ; Estimators ; Graph theory ; Laboratories ; Mathematical problems ; Time dependence</subject><ispartof>Mathematical problems in engineering, 2014-01, Vol.2014 (1)</ispartof><rights>Copyright © 2014 LiMin Wang et al.</rights><rights>Copyright © 2014 LiMin Wang et al. LiMin Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c366t-84c978737275c85eb7fc61b96a9ab730c521ea93923a9bd0a83e5601abc9e2ea3</citedby><cites>FETCH-LOGICAL-c366t-84c978737275c85eb7fc61b96a9ab730c521ea93923a9bd0a83e5601abc9e2ea3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><contributor>Xu, Yang</contributor><creatorcontrib>Wang, LiMin</creatorcontrib><creatorcontrib>Wang, ShuangCheng</creatorcontrib><creatorcontrib>Li, XiongFei</creatorcontrib><creatorcontrib>Chi, BaoRong</creatorcontrib><title>Extracting Credible Dependencies for Averaged One-Dependence Estimator Analysis</title><title>Mathematical problems in engineering</title><description>Of the numerous proposals to improve the accuracy of naive Bayes (NB) by weakening the conditional independence assumption, averaged one-dependence estimator (AODE) demonstrates remarkable zero-one loss performance. However, indiscriminate superparent attributes will bring both considerable computational cost and negative effect on classification accuracy. In this paper, to extract the most credible dependencies we present a new type of seminaive Bayesian operation, which selects superparent attributes by building maximum weighted spanning tree and removes highly correlated children attributes by functional dependency and canonical cover analysis. Our extensive experimental comparison on UCI data sets shows that this operation efficiently identifies possible superparent attributes at training time and eliminates redundant children attributes at classification time.</description><subject>Accuracy</subject><subject>Advantages</subject><subject>Algorithms</subject><subject>Bayesian analysis</subject><subject>Children</subject><subject>Classification</subject><subject>Computational efficiency</subject><subject>Cost analysis</subject><subject>Dependence</subject><subject>Estimators</subject><subject>Graph theory</subject><subject>Laboratories</subject><subject>Mathematical problems</subject><subject>Time dependence</subject><issn>1024-123X</issn><issn>1563-5147</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp90E1LwzAYB_AgCs7pyS9Q8CJKXZ6kSZqjzPkCg10UvIU0fTozunYmnbpvb0fFgwdPeSA_npc_IedAbwCEmDAK2SRTNGdwQEYgJE8FZOqwrynLUmD89ZicxLiilIGAfEQWs68uWNf5ZplMA5a-qDG5ww02JTbOY0yqNiS3HxjsEstk0WD6-4vJLHZ-bbu9aGy9iz6ekqPK1hHPft4xebmfPU8f0_ni4Wl6O08dl7JL88xplSuumBIuF1ioykkotLTaFopTJxig1VwzbnVRUptzFJKCLZxGhpaPyeXQdxPa9y3Gzqx9dFjXtsF2Gw1IRinXwERPL_7QVbsN_b69EoLlXMt-zJhcD8qFNsaAldmE_rawM0DNPlyzD9cM4fb6atBvvintp_8XfwOTDnek</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Wang, LiMin</creator><creator>Wang, ShuangCheng</creator><creator>Li, XiongFei</creator><creator>Chi, BaoRong</creator><general>Hindawi Publishing Corporation</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20140101</creationdate><title>Extracting Credible Dependencies for Averaged One-Dependence Estimator Analysis</title><author>Wang, LiMin ; Wang, ShuangCheng ; Li, XiongFei ; Chi, BaoRong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c366t-84c978737275c85eb7fc61b96a9ab730c521ea93923a9bd0a83e5601abc9e2ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Accuracy</topic><topic>Advantages</topic><topic>Algorithms</topic><topic>Bayesian analysis</topic><topic>Children</topic><topic>Classification</topic><topic>Computational efficiency</topic><topic>Cost analysis</topic><topic>Dependence</topic><topic>Estimators</topic><topic>Graph theory</topic><topic>Laboratories</topic><topic>Mathematical problems</topic><topic>Time dependence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, LiMin</creatorcontrib><creatorcontrib>Wang, ShuangCheng</creatorcontrib><creatorcontrib>Li, XiongFei</creatorcontrib><creatorcontrib>Chi, BaoRong</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Mathematical problems in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, LiMin</au><au>Wang, ShuangCheng</au><au>Li, XiongFei</au><au>Chi, BaoRong</au><au>Xu, Yang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extracting Credible Dependencies for Averaged One-Dependence Estimator Analysis</atitle><jtitle>Mathematical problems in engineering</jtitle><date>2014-01-01</date><risdate>2014</risdate><volume>2014</volume><issue>1</issue><issn>1024-123X</issn><eissn>1563-5147</eissn><abstract>Of the numerous proposals to improve the accuracy of naive Bayes (NB) by weakening the conditional independence assumption, averaged one-dependence estimator (AODE) demonstrates remarkable zero-one loss performance. However, indiscriminate superparent attributes will bring both considerable computational cost and negative effect on classification accuracy. In this paper, to extract the most credible dependencies we present a new type of seminaive Bayesian operation, which selects superparent attributes by building maximum weighted spanning tree and removes highly correlated children attributes by functional dependency and canonical cover analysis. Our extensive experimental comparison on UCI data sets shows that this operation efficiently identifies possible superparent attributes at training time and eliminates redundant children attributes at classification time.</abstract><cop>New York</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2014/470821</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1024-123X
ispartof Mathematical problems in engineering, 2014-01, Vol.2014 (1)
issn 1024-123X
1563-5147
language eng
recordid cdi_proquest_miscellaneous_1620039125
source Wiley-Blackwell Open Access Titles; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Accuracy
Advantages
Algorithms
Bayesian analysis
Children
Classification
Computational efficiency
Cost analysis
Dependence
Estimators
Graph theory
Laboratories
Mathematical problems
Time dependence
title Extracting Credible Dependencies for Averaged One-Dependence Estimator Analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T08%3A58%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extracting%20Credible%20Dependencies%20for%20Averaged%20One-Dependence%20Estimator%20Analysis&rft.jtitle=Mathematical%20problems%20in%20engineering&rft.au=Wang,%20LiMin&rft.date=2014-01-01&rft.volume=2014&rft.issue=1&rft.issn=1024-123X&rft.eissn=1563-5147&rft_id=info:doi/10.1155/2014/470821&rft_dat=%3Cproquest_cross%3E1620039125%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1552839692&rft_id=info:pmid/&rfr_iscdi=true