Euler deconvolution in a radial coordinate system

ABSTRACT This paper introduces the conversion of Euler's equation from a Cartesian coordinate system to a radial coordinate system, and then demonstrates that for sources of the type 1/rN (where r is the distance to the source, and N is the structural index) it can be solved at each point in sp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geophysical Prospecting 2014-09, Vol.62 (5), p.1169-1179
1. Verfasser: Cooper, G.R.J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1179
container_issue 5
container_start_page 1169
container_title Geophysical Prospecting
container_volume 62
creator Cooper, G.R.J.
description ABSTRACT This paper introduces the conversion of Euler's equation from a Cartesian coordinate system to a radial coordinate system, and then demonstrates that for sources of the type 1/rN (where r is the distance to the source, and N is the structural index) it can be solved at each point in space without the need for inversion, for a known structural index. It is shown that although the distance to the source that is obtained from Euler's equation depends on the structural index used, the direction to the source does not. For some models, such as the gravity and magnetic response of a contact, calculation of the analytic signal amplitude of the data is necessary prior to the application of the method. Effective noise attenuation strategies, such as the use of moving windows of data points, are also discussed. The method is applied to gravity and magnetic data from South Africa, and yields plausible results.
doi_str_mv 10.1111/1365-2478.12123
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1620038345</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1620038345</sourcerecordid><originalsourceid>FETCH-LOGICAL-a4793-c1ffa5c5c1c551f2a0aa6b5852f6916e0a7401f045480987b816dbb63691fdd43</originalsourceid><addsrcrecordid>eNqFkE1PwyAYgInRxDk9e23ixUs3XuCl3dEscxrnR4xf8UIYpUlnVxRadf_ezuoOXuRCAs9DXh5CDoEOoF1D4BJjJpJ0AAwY3yK9zck26VEKMk4pw12yF8KCUk4RRY_ApCmtjzJrXPXuyqYuXBUVVaQjr7NCl5FxzmdFpWsbhVWo7XKf7OS6DPbgZ--T-9PJ3fgsnl1Pz8cns1iLZMRjA3mu0aABgwg501RrOccUWS5HIC3ViaCQU4EipaM0macgs_lc8vY2zzLB--S4e_fVu7fGhloti2BsWerKuiYokKz9RcoFtujRH3ThGl-10ylARAacp7Slhh1lvAvB21y9-mKp_UoBVeuEah1MrYOp74StgZ3xUZR29R-upje3v17ceUUb7HPjaf-iZMITVI9XU_X8cPHEmWDqkn8Bhcl_dw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1555213380</pqid></control><display><type>article</type><title>Euler deconvolution in a radial coordinate system</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Cooper, G.R.J.</creator><creatorcontrib>Cooper, G.R.J.</creatorcontrib><description>ABSTRACT This paper introduces the conversion of Euler's equation from a Cartesian coordinate system to a radial coordinate system, and then demonstrates that for sources of the type 1/rN (where r is the distance to the source, and N is the structural index) it can be solved at each point in space without the need for inversion, for a known structural index. It is shown that although the distance to the source that is obtained from Euler's equation depends on the structural index used, the direction to the source does not. For some models, such as the gravity and magnetic response of a contact, calculation of the analytic signal amplitude of the data is necessary prior to the application of the method. Effective noise attenuation strategies, such as the use of moving windows of data points, are also discussed. The method is applied to gravity and magnetic data from South Africa, and yields plausible results.</description><identifier>ISSN: 0016-8025</identifier><identifier>EISSN: 1365-2478</identifier><identifier>DOI: 10.1111/1365-2478.12123</identifier><identifier>CODEN: GPPRAR</identifier><language>eng</language><publisher>Houten: Blackwell Publishing Ltd</publisher><subject>Attenuation ; Cartesian coordinate system ; Data points ; Euler equations ; Gravitation ; gravity ; magnetics ; Mathematical analysis ; Mathematical models ; semi-automatic ; Strategy</subject><ispartof>Geophysical Prospecting, 2014-09, Vol.62 (5), p.1169-1179</ispartof><rights>2014 European Association of Geoscientists &amp; Engineers</rights><rights>Copyright © 2014 European Association of Geoscientists &amp; Engineers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a4793-c1ffa5c5c1c551f2a0aa6b5852f6916e0a7401f045480987b816dbb63691fdd43</citedby><cites>FETCH-LOGICAL-a4793-c1ffa5c5c1c551f2a0aa6b5852f6916e0a7401f045480987b816dbb63691fdd43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2F1365-2478.12123$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2F1365-2478.12123$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45552,45553</link.rule.ids></links><search><creatorcontrib>Cooper, G.R.J.</creatorcontrib><title>Euler deconvolution in a radial coordinate system</title><title>Geophysical Prospecting</title><addtitle>Geophysical Prospecting</addtitle><description>ABSTRACT This paper introduces the conversion of Euler's equation from a Cartesian coordinate system to a radial coordinate system, and then demonstrates that for sources of the type 1/rN (where r is the distance to the source, and N is the structural index) it can be solved at each point in space without the need for inversion, for a known structural index. It is shown that although the distance to the source that is obtained from Euler's equation depends on the structural index used, the direction to the source does not. For some models, such as the gravity and magnetic response of a contact, calculation of the analytic signal amplitude of the data is necessary prior to the application of the method. Effective noise attenuation strategies, such as the use of moving windows of data points, are also discussed. The method is applied to gravity and magnetic data from South Africa, and yields plausible results.</description><subject>Attenuation</subject><subject>Cartesian coordinate system</subject><subject>Data points</subject><subject>Euler equations</subject><subject>Gravitation</subject><subject>gravity</subject><subject>magnetics</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>semi-automatic</subject><subject>Strategy</subject><issn>0016-8025</issn><issn>1365-2478</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkE1PwyAYgInRxDk9e23ixUs3XuCl3dEscxrnR4xf8UIYpUlnVxRadf_ezuoOXuRCAs9DXh5CDoEOoF1D4BJjJpJ0AAwY3yK9zck26VEKMk4pw12yF8KCUk4RRY_ApCmtjzJrXPXuyqYuXBUVVaQjr7NCl5FxzmdFpWsbhVWo7XKf7OS6DPbgZ--T-9PJ3fgsnl1Pz8cns1iLZMRjA3mu0aABgwg501RrOccUWS5HIC3ViaCQU4EipaM0macgs_lc8vY2zzLB--S4e_fVu7fGhloti2BsWerKuiYokKz9RcoFtujRH3ThGl-10ylARAacp7Slhh1lvAvB21y9-mKp_UoBVeuEah1MrYOp74StgZ3xUZR29R-upje3v17ceUUb7HPjaf-iZMITVI9XU_X8cPHEmWDqkn8Bhcl_dw</recordid><startdate>201409</startdate><enddate>201409</enddate><creator>Cooper, G.R.J.</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope></search><sort><creationdate>201409</creationdate><title>Euler deconvolution in a radial coordinate system</title><author>Cooper, G.R.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a4793-c1ffa5c5c1c551f2a0aa6b5852f6916e0a7401f045480987b816dbb63691fdd43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Attenuation</topic><topic>Cartesian coordinate system</topic><topic>Data points</topic><topic>Euler equations</topic><topic>Gravitation</topic><topic>gravity</topic><topic>magnetics</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>semi-automatic</topic><topic>Strategy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cooper, G.R.J.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Geophysical Prospecting</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cooper, G.R.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Euler deconvolution in a radial coordinate system</atitle><jtitle>Geophysical Prospecting</jtitle><addtitle>Geophysical Prospecting</addtitle><date>2014-09</date><risdate>2014</risdate><volume>62</volume><issue>5</issue><spage>1169</spage><epage>1179</epage><pages>1169-1179</pages><issn>0016-8025</issn><eissn>1365-2478</eissn><coden>GPPRAR</coden><abstract>ABSTRACT This paper introduces the conversion of Euler's equation from a Cartesian coordinate system to a radial coordinate system, and then demonstrates that for sources of the type 1/rN (where r is the distance to the source, and N is the structural index) it can be solved at each point in space without the need for inversion, for a known structural index. It is shown that although the distance to the source that is obtained from Euler's equation depends on the structural index used, the direction to the source does not. For some models, such as the gravity and magnetic response of a contact, calculation of the analytic signal amplitude of the data is necessary prior to the application of the method. Effective noise attenuation strategies, such as the use of moving windows of data points, are also discussed. The method is applied to gravity and magnetic data from South Africa, and yields plausible results.</abstract><cop>Houten</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/1365-2478.12123</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0016-8025
ispartof Geophysical Prospecting, 2014-09, Vol.62 (5), p.1169-1179
issn 0016-8025
1365-2478
language eng
recordid cdi_proquest_miscellaneous_1620038345
source Wiley Online Library Journals Frontfile Complete
subjects Attenuation
Cartesian coordinate system
Data points
Euler equations
Gravitation
gravity
magnetics
Mathematical analysis
Mathematical models
semi-automatic
Strategy
title Euler deconvolution in a radial coordinate system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T07%3A34%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Euler%20deconvolution%20in%20a%20radial%20coordinate%20system&rft.jtitle=Geophysical%20Prospecting&rft.au=Cooper,%20G.R.J.&rft.date=2014-09&rft.volume=62&rft.issue=5&rft.spage=1169&rft.epage=1179&rft.pages=1169-1179&rft.issn=0016-8025&rft.eissn=1365-2478&rft.coden=GPPRAR&rft_id=info:doi/10.1111/1365-2478.12123&rft_dat=%3Cproquest_cross%3E1620038345%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1555213380&rft_id=info:pmid/&rfr_iscdi=true