Mapping multi-wavelet reentry without isochrones: an electrogram-guided approach to define substrate distribution
A key mechanism responsible for atrial fibrillation is multi-wavelet reentry (MWR). We have previously demonstrated that ablation in regions of increased circuit density reduces the duration of, and decreases the inducibility of MWR. In this study, we demonstrate a method for identifying local circu...
Gespeichert in:
Veröffentlicht in: | Europace (London, England) England), 2014-11, Vol.16 Suppl 4 (suppl 4), p.iv102-iv109 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | iv109 |
---|---|
container_issue | suppl 4 |
container_start_page | iv102 |
container_title | Europace (London, England) |
container_volume | 16 Suppl 4 |
creator | Benson, Bryce E Carrick, Richard Habel, Nicole Bates, Oliver Bates, Jason H T Bielau, Philipp Spector, Peter |
description | A key mechanism responsible for atrial fibrillation is multi-wavelet reentry (MWR). We have previously demonstrated that ablation in regions of increased circuit density reduces the duration of, and decreases the inducibility of MWR. In this study, we demonstrate a method for identifying local circuit density using electrogram frequency and validated its effectiveness for map-guided ablation in a computer model of MWR.
We simulated MWR in tissues with variation of action potential duration and intercellular resistance. Electrograms were calculated using various electrode sizes and configurations. We measured and compared the number of circuits to the tissue activation frequency and electrogram frequency using three recording configurations [unipolar, contact bipolar, orthogonal closed unipolar (OCU)] and two frequency measurements (dominant frequency, centroid frequency). We then used the highest resolution electrogram frequency map (OCU centroid frequency) to guide the placement of lesions to high frequency regions. Map-guided ablation was compared with no ablation and random/blind ablation lesions of equal length. Electrogram frequency correlated with tissue frequency and circuit density as a function of electrode spatial resolution. Map-guided ablation resulted in a significant reduction in MWR duration (142 ± 174 vs. 41 ± 63 s).
Electrogram frequency correlates with circuit density in MWR provided electrodes have high spatial resolution. Map-guided ablation is superior to no ablation and to blind/random ablation. |
doi_str_mv | 10.1093/europace/euu254 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1620024357</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1620024357</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-c7b3e370a69063ad1c2b62c3700fc7b6d897c3a89fa7a1de5fb80c708881d99a3</originalsourceid><addsrcrecordid>eNo9kElPwzAQRi0EoqVw5oZ85BLqpVnMDVVsUhEXOEeOPWmNkjj1QtV_j1ELJ3_yvPk0eghdU3JHieBziM6OUkEKkeWLEzSlOWcZI4KdpkyEyHLKxARdeP9FCCmZyM_RhOW8YDQXU7R9k-NohjXuYxdMtpPf0EHADmAIbo93JmxsDNh4qzbODuDvsRxwYlRwdu1kn62j0aBxqnFWqg0OFmtozQDYx8YHJwNgbVIwTQzGDpforJWdh6vjO0OfT48fy5ds9f78unxYZYoVVchU2XDgJZGFIAWXmirWFEylH9KmWaErUSouK9HKUlINedtURJWkqiqqhZB8hm4PvemubQQf6t54BV0nB7DR17RghLAFz8uEzg-octZ7B209OtNLt68pqX8913-e64PntHFzLI9ND_qf_xPLfwDjEX-C</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1620024357</pqid></control><display><type>article</type><title>Mapping multi-wavelet reentry without isochrones: an electrogram-guided approach to define substrate distribution</title><source>MEDLINE</source><source>Oxford Journals Open Access Collection</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Benson, Bryce E ; Carrick, Richard ; Habel, Nicole ; Bates, Oliver ; Bates, Jason H T ; Bielau, Philipp ; Spector, Peter</creator><creatorcontrib>Benson, Bryce E ; Carrick, Richard ; Habel, Nicole ; Bates, Oliver ; Bates, Jason H T ; Bielau, Philipp ; Spector, Peter</creatorcontrib><description>A key mechanism responsible for atrial fibrillation is multi-wavelet reentry (MWR). We have previously demonstrated that ablation in regions of increased circuit density reduces the duration of, and decreases the inducibility of MWR. In this study, we demonstrate a method for identifying local circuit density using electrogram frequency and validated its effectiveness for map-guided ablation in a computer model of MWR.
We simulated MWR in tissues with variation of action potential duration and intercellular resistance. Electrograms were calculated using various electrode sizes and configurations. We measured and compared the number of circuits to the tissue activation frequency and electrogram frequency using three recording configurations [unipolar, contact bipolar, orthogonal closed unipolar (OCU)] and two frequency measurements (dominant frequency, centroid frequency). We then used the highest resolution electrogram frequency map (OCU centroid frequency) to guide the placement of lesions to high frequency regions. Map-guided ablation was compared with no ablation and random/blind ablation lesions of equal length. Electrogram frequency correlated with tissue frequency and circuit density as a function of electrode spatial resolution. Map-guided ablation resulted in a significant reduction in MWR duration (142 ± 174 vs. 41 ± 63 s).
Electrogram frequency correlates with circuit density in MWR provided electrodes have high spatial resolution. Map-guided ablation is superior to no ablation and to blind/random ablation.</description><identifier>ISSN: 1099-5129</identifier><identifier>EISSN: 1532-2092</identifier><identifier>DOI: 10.1093/europace/euu254</identifier><identifier>PMID: 25362159</identifier><language>eng</language><publisher>England</publisher><subject>Action Potentials ; Atrial Fibrillation - diagnosis ; Atrial Fibrillation - physiopathology ; Atrial Fibrillation - surgery ; Catheter Ablation - methods ; Computer Simulation ; Electrophysiologic Techniques, Cardiac ; Heart Atria - physiopathology ; Heart Atria - surgery ; Heart Conduction System - physiopathology ; Heart Conduction System - surgery ; Humans ; Models, Cardiovascular ; Predictive Value of Tests ; Surgery, Computer-Assisted - methods ; Time Factors ; Treatment Outcome</subject><ispartof>Europace (London, England), 2014-11, Vol.16 Suppl 4 (suppl 4), p.iv102-iv109</ispartof><rights>Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2014. For permissions please email: journals.permissions@oup.com.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c268t-c7b3e370a69063ad1c2b62c3700fc7b6d897c3a89fa7a1de5fb80c708881d99a3</citedby><cites>FETCH-LOGICAL-c268t-c7b3e370a69063ad1c2b62c3700fc7b6d897c3a89fa7a1de5fb80c708881d99a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25362159$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Benson, Bryce E</creatorcontrib><creatorcontrib>Carrick, Richard</creatorcontrib><creatorcontrib>Habel, Nicole</creatorcontrib><creatorcontrib>Bates, Oliver</creatorcontrib><creatorcontrib>Bates, Jason H T</creatorcontrib><creatorcontrib>Bielau, Philipp</creatorcontrib><creatorcontrib>Spector, Peter</creatorcontrib><title>Mapping multi-wavelet reentry without isochrones: an electrogram-guided approach to define substrate distribution</title><title>Europace (London, England)</title><addtitle>Europace</addtitle><description>A key mechanism responsible for atrial fibrillation is multi-wavelet reentry (MWR). We have previously demonstrated that ablation in regions of increased circuit density reduces the duration of, and decreases the inducibility of MWR. In this study, we demonstrate a method for identifying local circuit density using electrogram frequency and validated its effectiveness for map-guided ablation in a computer model of MWR.
We simulated MWR in tissues with variation of action potential duration and intercellular resistance. Electrograms were calculated using various electrode sizes and configurations. We measured and compared the number of circuits to the tissue activation frequency and electrogram frequency using three recording configurations [unipolar, contact bipolar, orthogonal closed unipolar (OCU)] and two frequency measurements (dominant frequency, centroid frequency). We then used the highest resolution electrogram frequency map (OCU centroid frequency) to guide the placement of lesions to high frequency regions. Map-guided ablation was compared with no ablation and random/blind ablation lesions of equal length. Electrogram frequency correlated with tissue frequency and circuit density as a function of electrode spatial resolution. Map-guided ablation resulted in a significant reduction in MWR duration (142 ± 174 vs. 41 ± 63 s).
Electrogram frequency correlates with circuit density in MWR provided electrodes have high spatial resolution. Map-guided ablation is superior to no ablation and to blind/random ablation.</description><subject>Action Potentials</subject><subject>Atrial Fibrillation - diagnosis</subject><subject>Atrial Fibrillation - physiopathology</subject><subject>Atrial Fibrillation - surgery</subject><subject>Catheter Ablation - methods</subject><subject>Computer Simulation</subject><subject>Electrophysiologic Techniques, Cardiac</subject><subject>Heart Atria - physiopathology</subject><subject>Heart Atria - surgery</subject><subject>Heart Conduction System - physiopathology</subject><subject>Heart Conduction System - surgery</subject><subject>Humans</subject><subject>Models, Cardiovascular</subject><subject>Predictive Value of Tests</subject><subject>Surgery, Computer-Assisted - methods</subject><subject>Time Factors</subject><subject>Treatment Outcome</subject><issn>1099-5129</issn><issn>1532-2092</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo9kElPwzAQRi0EoqVw5oZ85BLqpVnMDVVsUhEXOEeOPWmNkjj1QtV_j1ELJ3_yvPk0eghdU3JHieBziM6OUkEKkeWLEzSlOWcZI4KdpkyEyHLKxARdeP9FCCmZyM_RhOW8YDQXU7R9k-NohjXuYxdMtpPf0EHADmAIbo93JmxsDNh4qzbODuDvsRxwYlRwdu1kn62j0aBxqnFWqg0OFmtozQDYx8YHJwNgbVIwTQzGDpforJWdh6vjO0OfT48fy5ds9f78unxYZYoVVchU2XDgJZGFIAWXmirWFEylH9KmWaErUSouK9HKUlINedtURJWkqiqqhZB8hm4PvemubQQf6t54BV0nB7DR17RghLAFz8uEzg-octZ7B209OtNLt68pqX8913-e64PntHFzLI9ND_qf_xPLfwDjEX-C</recordid><startdate>201411</startdate><enddate>201411</enddate><creator>Benson, Bryce E</creator><creator>Carrick, Richard</creator><creator>Habel, Nicole</creator><creator>Bates, Oliver</creator><creator>Bates, Jason H T</creator><creator>Bielau, Philipp</creator><creator>Spector, Peter</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201411</creationdate><title>Mapping multi-wavelet reentry without isochrones: an electrogram-guided approach to define substrate distribution</title><author>Benson, Bryce E ; Carrick, Richard ; Habel, Nicole ; Bates, Oliver ; Bates, Jason H T ; Bielau, Philipp ; Spector, Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-c7b3e370a69063ad1c2b62c3700fc7b6d897c3a89fa7a1de5fb80c708881d99a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Action Potentials</topic><topic>Atrial Fibrillation - diagnosis</topic><topic>Atrial Fibrillation - physiopathology</topic><topic>Atrial Fibrillation - surgery</topic><topic>Catheter Ablation - methods</topic><topic>Computer Simulation</topic><topic>Electrophysiologic Techniques, Cardiac</topic><topic>Heart Atria - physiopathology</topic><topic>Heart Atria - surgery</topic><topic>Heart Conduction System - physiopathology</topic><topic>Heart Conduction System - surgery</topic><topic>Humans</topic><topic>Models, Cardiovascular</topic><topic>Predictive Value of Tests</topic><topic>Surgery, Computer-Assisted - methods</topic><topic>Time Factors</topic><topic>Treatment Outcome</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Benson, Bryce E</creatorcontrib><creatorcontrib>Carrick, Richard</creatorcontrib><creatorcontrib>Habel, Nicole</creatorcontrib><creatorcontrib>Bates, Oliver</creatorcontrib><creatorcontrib>Bates, Jason H T</creatorcontrib><creatorcontrib>Bielau, Philipp</creatorcontrib><creatorcontrib>Spector, Peter</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Europace (London, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Benson, Bryce E</au><au>Carrick, Richard</au><au>Habel, Nicole</au><au>Bates, Oliver</au><au>Bates, Jason H T</au><au>Bielau, Philipp</au><au>Spector, Peter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mapping multi-wavelet reentry without isochrones: an electrogram-guided approach to define substrate distribution</atitle><jtitle>Europace (London, England)</jtitle><addtitle>Europace</addtitle><date>2014-11</date><risdate>2014</risdate><volume>16 Suppl 4</volume><issue>suppl 4</issue><spage>iv102</spage><epage>iv109</epage><pages>iv102-iv109</pages><issn>1099-5129</issn><eissn>1532-2092</eissn><abstract>A key mechanism responsible for atrial fibrillation is multi-wavelet reentry (MWR). We have previously demonstrated that ablation in regions of increased circuit density reduces the duration of, and decreases the inducibility of MWR. In this study, we demonstrate a method for identifying local circuit density using electrogram frequency and validated its effectiveness for map-guided ablation in a computer model of MWR.
We simulated MWR in tissues with variation of action potential duration and intercellular resistance. Electrograms were calculated using various electrode sizes and configurations. We measured and compared the number of circuits to the tissue activation frequency and electrogram frequency using three recording configurations [unipolar, contact bipolar, orthogonal closed unipolar (OCU)] and two frequency measurements (dominant frequency, centroid frequency). We then used the highest resolution electrogram frequency map (OCU centroid frequency) to guide the placement of lesions to high frequency regions. Map-guided ablation was compared with no ablation and random/blind ablation lesions of equal length. Electrogram frequency correlated with tissue frequency and circuit density as a function of electrode spatial resolution. Map-guided ablation resulted in a significant reduction in MWR duration (142 ± 174 vs. 41 ± 63 s).
Electrogram frequency correlates with circuit density in MWR provided electrodes have high spatial resolution. Map-guided ablation is superior to no ablation and to blind/random ablation.</abstract><cop>England</cop><pmid>25362159</pmid><doi>10.1093/europace/euu254</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1099-5129 |
ispartof | Europace (London, England), 2014-11, Vol.16 Suppl 4 (suppl 4), p.iv102-iv109 |
issn | 1099-5129 1532-2092 |
language | eng |
recordid | cdi_proquest_miscellaneous_1620024357 |
source | MEDLINE; Oxford Journals Open Access Collection; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection |
subjects | Action Potentials Atrial Fibrillation - diagnosis Atrial Fibrillation - physiopathology Atrial Fibrillation - surgery Catheter Ablation - methods Computer Simulation Electrophysiologic Techniques, Cardiac Heart Atria - physiopathology Heart Atria - surgery Heart Conduction System - physiopathology Heart Conduction System - surgery Humans Models, Cardiovascular Predictive Value of Tests Surgery, Computer-Assisted - methods Time Factors Treatment Outcome |
title | Mapping multi-wavelet reentry without isochrones: an electrogram-guided approach to define substrate distribution |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T15%3A57%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mapping%20multi-wavelet%20reentry%20without%20isochrones:%20an%20electrogram-guided%20approach%20to%20define%20substrate%20distribution&rft.jtitle=Europace%20(London,%20England)&rft.au=Benson,%20Bryce%20E&rft.date=2014-11&rft.volume=16%20Suppl%204&rft.issue=suppl%204&rft.spage=iv102&rft.epage=iv109&rft.pages=iv102-iv109&rft.issn=1099-5129&rft.eissn=1532-2092&rft_id=info:doi/10.1093/europace/euu254&rft_dat=%3Cproquest_cross%3E1620024357%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1620024357&rft_id=info:pmid/25362159&rfr_iscdi=true |