Mapping multi-wavelet reentry without isochrones: an electrogram-guided approach to define substrate distribution

A key mechanism responsible for atrial fibrillation is multi-wavelet reentry (MWR). We have previously demonstrated that ablation in regions of increased circuit density reduces the duration of, and decreases the inducibility of MWR. In this study, we demonstrate a method for identifying local circu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Europace (London, England) England), 2014-11, Vol.16 Suppl 4 (suppl 4), p.iv102-iv109
Hauptverfasser: Benson, Bryce E, Carrick, Richard, Habel, Nicole, Bates, Oliver, Bates, Jason H T, Bielau, Philipp, Spector, Peter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page iv109
container_issue suppl 4
container_start_page iv102
container_title Europace (London, England)
container_volume 16 Suppl 4
creator Benson, Bryce E
Carrick, Richard
Habel, Nicole
Bates, Oliver
Bates, Jason H T
Bielau, Philipp
Spector, Peter
description A key mechanism responsible for atrial fibrillation is multi-wavelet reentry (MWR). We have previously demonstrated that ablation in regions of increased circuit density reduces the duration of, and decreases the inducibility of MWR. In this study, we demonstrate a method for identifying local circuit density using electrogram frequency and validated its effectiveness for map-guided ablation in a computer model of MWR. We simulated MWR in tissues with variation of action potential duration and intercellular resistance. Electrograms were calculated using various electrode sizes and configurations. We measured and compared the number of circuits to the tissue activation frequency and electrogram frequency using three recording configurations [unipolar, contact bipolar, orthogonal closed unipolar (OCU)] and two frequency measurements (dominant frequency, centroid frequency). We then used the highest resolution electrogram frequency map (OCU centroid frequency) to guide the placement of lesions to high frequency regions. Map-guided ablation was compared with no ablation and random/blind ablation lesions of equal length. Electrogram frequency correlated with tissue frequency and circuit density as a function of electrode spatial resolution. Map-guided ablation resulted in a significant reduction in MWR duration (142 ± 174 vs. 41 ± 63 s). Electrogram frequency correlates with circuit density in MWR provided electrodes have high spatial resolution. Map-guided ablation is superior to no ablation and to blind/random ablation.
doi_str_mv 10.1093/europace/euu254
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1620024357</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1620024357</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-c7b3e370a69063ad1c2b62c3700fc7b6d897c3a89fa7a1de5fb80c708881d99a3</originalsourceid><addsrcrecordid>eNo9kElPwzAQRi0EoqVw5oZ85BLqpVnMDVVsUhEXOEeOPWmNkjj1QtV_j1ELJ3_yvPk0eghdU3JHieBziM6OUkEKkeWLEzSlOWcZI4KdpkyEyHLKxARdeP9FCCmZyM_RhOW8YDQXU7R9k-NohjXuYxdMtpPf0EHADmAIbo93JmxsDNh4qzbODuDvsRxwYlRwdu1kn62j0aBxqnFWqg0OFmtozQDYx8YHJwNgbVIwTQzGDpforJWdh6vjO0OfT48fy5ds9f78unxYZYoVVchU2XDgJZGFIAWXmirWFEylH9KmWaErUSouK9HKUlINedtURJWkqiqqhZB8hm4PvemubQQf6t54BV0nB7DR17RghLAFz8uEzg-octZ7B209OtNLt68pqX8913-e64PntHFzLI9ND_qf_xPLfwDjEX-C</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1620024357</pqid></control><display><type>article</type><title>Mapping multi-wavelet reentry without isochrones: an electrogram-guided approach to define substrate distribution</title><source>MEDLINE</source><source>Oxford Journals Open Access Collection</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Benson, Bryce E ; Carrick, Richard ; Habel, Nicole ; Bates, Oliver ; Bates, Jason H T ; Bielau, Philipp ; Spector, Peter</creator><creatorcontrib>Benson, Bryce E ; Carrick, Richard ; Habel, Nicole ; Bates, Oliver ; Bates, Jason H T ; Bielau, Philipp ; Spector, Peter</creatorcontrib><description>A key mechanism responsible for atrial fibrillation is multi-wavelet reentry (MWR). We have previously demonstrated that ablation in regions of increased circuit density reduces the duration of, and decreases the inducibility of MWR. In this study, we demonstrate a method for identifying local circuit density using electrogram frequency and validated its effectiveness for map-guided ablation in a computer model of MWR. We simulated MWR in tissues with variation of action potential duration and intercellular resistance. Electrograms were calculated using various electrode sizes and configurations. We measured and compared the number of circuits to the tissue activation frequency and electrogram frequency using three recording configurations [unipolar, contact bipolar, orthogonal closed unipolar (OCU)] and two frequency measurements (dominant frequency, centroid frequency). We then used the highest resolution electrogram frequency map (OCU centroid frequency) to guide the placement of lesions to high frequency regions. Map-guided ablation was compared with no ablation and random/blind ablation lesions of equal length. Electrogram frequency correlated with tissue frequency and circuit density as a function of electrode spatial resolution. Map-guided ablation resulted in a significant reduction in MWR duration (142 ± 174 vs. 41 ± 63 s). Electrogram frequency correlates with circuit density in MWR provided electrodes have high spatial resolution. Map-guided ablation is superior to no ablation and to blind/random ablation.</description><identifier>ISSN: 1099-5129</identifier><identifier>EISSN: 1532-2092</identifier><identifier>DOI: 10.1093/europace/euu254</identifier><identifier>PMID: 25362159</identifier><language>eng</language><publisher>England</publisher><subject>Action Potentials ; Atrial Fibrillation - diagnosis ; Atrial Fibrillation - physiopathology ; Atrial Fibrillation - surgery ; Catheter Ablation - methods ; Computer Simulation ; Electrophysiologic Techniques, Cardiac ; Heart Atria - physiopathology ; Heart Atria - surgery ; Heart Conduction System - physiopathology ; Heart Conduction System - surgery ; Humans ; Models, Cardiovascular ; Predictive Value of Tests ; Surgery, Computer-Assisted - methods ; Time Factors ; Treatment Outcome</subject><ispartof>Europace (London, England), 2014-11, Vol.16 Suppl 4 (suppl 4), p.iv102-iv109</ispartof><rights>Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2014. For permissions please email: journals.permissions@oup.com.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c268t-c7b3e370a69063ad1c2b62c3700fc7b6d897c3a89fa7a1de5fb80c708881d99a3</citedby><cites>FETCH-LOGICAL-c268t-c7b3e370a69063ad1c2b62c3700fc7b6d897c3a89fa7a1de5fb80c708881d99a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25362159$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Benson, Bryce E</creatorcontrib><creatorcontrib>Carrick, Richard</creatorcontrib><creatorcontrib>Habel, Nicole</creatorcontrib><creatorcontrib>Bates, Oliver</creatorcontrib><creatorcontrib>Bates, Jason H T</creatorcontrib><creatorcontrib>Bielau, Philipp</creatorcontrib><creatorcontrib>Spector, Peter</creatorcontrib><title>Mapping multi-wavelet reentry without isochrones: an electrogram-guided approach to define substrate distribution</title><title>Europace (London, England)</title><addtitle>Europace</addtitle><description>A key mechanism responsible for atrial fibrillation is multi-wavelet reentry (MWR). We have previously demonstrated that ablation in regions of increased circuit density reduces the duration of, and decreases the inducibility of MWR. In this study, we demonstrate a method for identifying local circuit density using electrogram frequency and validated its effectiveness for map-guided ablation in a computer model of MWR. We simulated MWR in tissues with variation of action potential duration and intercellular resistance. Electrograms were calculated using various electrode sizes and configurations. We measured and compared the number of circuits to the tissue activation frequency and electrogram frequency using three recording configurations [unipolar, contact bipolar, orthogonal closed unipolar (OCU)] and two frequency measurements (dominant frequency, centroid frequency). We then used the highest resolution electrogram frequency map (OCU centroid frequency) to guide the placement of lesions to high frequency regions. Map-guided ablation was compared with no ablation and random/blind ablation lesions of equal length. Electrogram frequency correlated with tissue frequency and circuit density as a function of electrode spatial resolution. Map-guided ablation resulted in a significant reduction in MWR duration (142 ± 174 vs. 41 ± 63 s). Electrogram frequency correlates with circuit density in MWR provided electrodes have high spatial resolution. Map-guided ablation is superior to no ablation and to blind/random ablation.</description><subject>Action Potentials</subject><subject>Atrial Fibrillation - diagnosis</subject><subject>Atrial Fibrillation - physiopathology</subject><subject>Atrial Fibrillation - surgery</subject><subject>Catheter Ablation - methods</subject><subject>Computer Simulation</subject><subject>Electrophysiologic Techniques, Cardiac</subject><subject>Heart Atria - physiopathology</subject><subject>Heart Atria - surgery</subject><subject>Heart Conduction System - physiopathology</subject><subject>Heart Conduction System - surgery</subject><subject>Humans</subject><subject>Models, Cardiovascular</subject><subject>Predictive Value of Tests</subject><subject>Surgery, Computer-Assisted - methods</subject><subject>Time Factors</subject><subject>Treatment Outcome</subject><issn>1099-5129</issn><issn>1532-2092</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo9kElPwzAQRi0EoqVw5oZ85BLqpVnMDVVsUhEXOEeOPWmNkjj1QtV_j1ELJ3_yvPk0eghdU3JHieBziM6OUkEKkeWLEzSlOWcZI4KdpkyEyHLKxARdeP9FCCmZyM_RhOW8YDQXU7R9k-NohjXuYxdMtpPf0EHADmAIbo93JmxsDNh4qzbODuDvsRxwYlRwdu1kn62j0aBxqnFWqg0OFmtozQDYx8YHJwNgbVIwTQzGDpforJWdh6vjO0OfT48fy5ds9f78unxYZYoVVchU2XDgJZGFIAWXmirWFEylH9KmWaErUSouK9HKUlINedtURJWkqiqqhZB8hm4PvemubQQf6t54BV0nB7DR17RghLAFz8uEzg-octZ7B209OtNLt68pqX8913-e64PntHFzLI9ND_qf_xPLfwDjEX-C</recordid><startdate>201411</startdate><enddate>201411</enddate><creator>Benson, Bryce E</creator><creator>Carrick, Richard</creator><creator>Habel, Nicole</creator><creator>Bates, Oliver</creator><creator>Bates, Jason H T</creator><creator>Bielau, Philipp</creator><creator>Spector, Peter</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201411</creationdate><title>Mapping multi-wavelet reentry without isochrones: an electrogram-guided approach to define substrate distribution</title><author>Benson, Bryce E ; Carrick, Richard ; Habel, Nicole ; Bates, Oliver ; Bates, Jason H T ; Bielau, Philipp ; Spector, Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-c7b3e370a69063ad1c2b62c3700fc7b6d897c3a89fa7a1de5fb80c708881d99a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Action Potentials</topic><topic>Atrial Fibrillation - diagnosis</topic><topic>Atrial Fibrillation - physiopathology</topic><topic>Atrial Fibrillation - surgery</topic><topic>Catheter Ablation - methods</topic><topic>Computer Simulation</topic><topic>Electrophysiologic Techniques, Cardiac</topic><topic>Heart Atria - physiopathology</topic><topic>Heart Atria - surgery</topic><topic>Heart Conduction System - physiopathology</topic><topic>Heart Conduction System - surgery</topic><topic>Humans</topic><topic>Models, Cardiovascular</topic><topic>Predictive Value of Tests</topic><topic>Surgery, Computer-Assisted - methods</topic><topic>Time Factors</topic><topic>Treatment Outcome</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Benson, Bryce E</creatorcontrib><creatorcontrib>Carrick, Richard</creatorcontrib><creatorcontrib>Habel, Nicole</creatorcontrib><creatorcontrib>Bates, Oliver</creatorcontrib><creatorcontrib>Bates, Jason H T</creatorcontrib><creatorcontrib>Bielau, Philipp</creatorcontrib><creatorcontrib>Spector, Peter</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Europace (London, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Benson, Bryce E</au><au>Carrick, Richard</au><au>Habel, Nicole</au><au>Bates, Oliver</au><au>Bates, Jason H T</au><au>Bielau, Philipp</au><au>Spector, Peter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mapping multi-wavelet reentry without isochrones: an electrogram-guided approach to define substrate distribution</atitle><jtitle>Europace (London, England)</jtitle><addtitle>Europace</addtitle><date>2014-11</date><risdate>2014</risdate><volume>16 Suppl 4</volume><issue>suppl 4</issue><spage>iv102</spage><epage>iv109</epage><pages>iv102-iv109</pages><issn>1099-5129</issn><eissn>1532-2092</eissn><abstract>A key mechanism responsible for atrial fibrillation is multi-wavelet reentry (MWR). We have previously demonstrated that ablation in regions of increased circuit density reduces the duration of, and decreases the inducibility of MWR. In this study, we demonstrate a method for identifying local circuit density using electrogram frequency and validated its effectiveness for map-guided ablation in a computer model of MWR. We simulated MWR in tissues with variation of action potential duration and intercellular resistance. Electrograms were calculated using various electrode sizes and configurations. We measured and compared the number of circuits to the tissue activation frequency and electrogram frequency using three recording configurations [unipolar, contact bipolar, orthogonal closed unipolar (OCU)] and two frequency measurements (dominant frequency, centroid frequency). We then used the highest resolution electrogram frequency map (OCU centroid frequency) to guide the placement of lesions to high frequency regions. Map-guided ablation was compared with no ablation and random/blind ablation lesions of equal length. Electrogram frequency correlated with tissue frequency and circuit density as a function of electrode spatial resolution. Map-guided ablation resulted in a significant reduction in MWR duration (142 ± 174 vs. 41 ± 63 s). Electrogram frequency correlates with circuit density in MWR provided electrodes have high spatial resolution. Map-guided ablation is superior to no ablation and to blind/random ablation.</abstract><cop>England</cop><pmid>25362159</pmid><doi>10.1093/europace/euu254</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1099-5129
ispartof Europace (London, England), 2014-11, Vol.16 Suppl 4 (suppl 4), p.iv102-iv109
issn 1099-5129
1532-2092
language eng
recordid cdi_proquest_miscellaneous_1620024357
source MEDLINE; Oxford Journals Open Access Collection; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection
subjects Action Potentials
Atrial Fibrillation - diagnosis
Atrial Fibrillation - physiopathology
Atrial Fibrillation - surgery
Catheter Ablation - methods
Computer Simulation
Electrophysiologic Techniques, Cardiac
Heart Atria - physiopathology
Heart Atria - surgery
Heart Conduction System - physiopathology
Heart Conduction System - surgery
Humans
Models, Cardiovascular
Predictive Value of Tests
Surgery, Computer-Assisted - methods
Time Factors
Treatment Outcome
title Mapping multi-wavelet reentry without isochrones: an electrogram-guided approach to define substrate distribution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T15%3A57%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mapping%20multi-wavelet%20reentry%20without%20isochrones:%20an%20electrogram-guided%20approach%20to%20define%20substrate%20distribution&rft.jtitle=Europace%20(London,%20England)&rft.au=Benson,%20Bryce%20E&rft.date=2014-11&rft.volume=16%20Suppl%204&rft.issue=suppl%204&rft.spage=iv102&rft.epage=iv109&rft.pages=iv102-iv109&rft.issn=1099-5129&rft.eissn=1532-2092&rft_id=info:doi/10.1093/europace/euu254&rft_dat=%3Cproquest_cross%3E1620024357%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1620024357&rft_id=info:pmid/25362159&rfr_iscdi=true