Determining in-channel (dead zone) transient storage by comparing solute transport in a bedrock channel-alluvial channel sequence, Oregon

Current stream tracer techniques do not allow separation of in‐channel dead zone (e.g., eddies) and out‐of‐channel (hyporheic) transient storage, yet this separation is important to understanding stream biogeochemical processes. We characterize in‐channel transient storage with a rhodamine WT solute...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water resources research 2005-06, Vol.41 (6), p.n/a
Hauptverfasser: Gooseff, Michael N., LaNier, Justin, Haggerty, Roy, Kokkeler, Kenneth
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 6
container_start_page
container_title Water resources research
container_volume 41
creator Gooseff, Michael N.
LaNier, Justin
Haggerty, Roy
Kokkeler, Kenneth
description Current stream tracer techniques do not allow separation of in‐channel dead zone (e.g., eddies) and out‐of‐channel (hyporheic) transient storage, yet this separation is important to understanding stream biogeochemical processes. We characterize in‐channel transient storage with a rhodamine WT solute tracer experiment in a 304 m cascade‐pool‐type bedrock reach with no hyporheic zone. We compare the solute breakthrough curve (BTC) from this reach to that of an adjacent 367 m alluvial reach with significant hyporheic exchange. In the bedrock reach, transient storage has an exponential residence time distribution with a mean residence time of 3.0 hours and a ratio of transient storage to stream volume of 0.14, demonstrating that at moderate discharge, bedrock in‐channel storage zones provide a small volume of transient storage with substantial residence time. In the alluvial reach, though pools are similar in size to those in the bedrock reach, transient storage has a power law residence time distribution with a mean residence time of >100 hours (estimated at nearly 1200 hours) and a ratio of storage to stream volume of 105. Because the in‐channel hydraulics of bedrock reaches are simpler than alluvial step‐pool reaches, the bedrock results are probably a lower end‐member with respect to volume and residence time, though they demonstrate that in‐channel storage may be appreciable in some reaches. These results suggest that in‐stream dead zone transient storage may be accurately simulated by exponential RTDs but that hyporheic exchange is better simulated with a power law RTD as a consequence of more complicated flow path and exchange dynamics.
doi_str_mv 10.1029/2004WR003513
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_16199875</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>16199875</sourcerecordid><originalsourceid>FETCH-LOGICAL-a4093-37986ce3806575e70a78be10e1eed2287acbd0312c542f8e5312622ab8bc8dc43</originalsourceid><addsrcrecordid>eNp9kE1P4zAQhi0EEuXjtj_AJwQSWfyRxM4RFShoESwVqx4tx5kWg2sXO92l_IP916QKIE6cZjTzPK9Gg9APSn5SwqoTRkg-GRPCC8o30IBWeZ6JSvBNNOg2PKO8EttoJ6VHQmhelGKA_p9BC3FuvfUzbH1mHrT34PBhA7rBr8HDEW6j9smCb3FqQ9QzwPUKmzBf6Li2UnDLFnpqEWLbxWCNa2hiME_4PTDTzi3_Wu0-BjjB8xK8gWN8G2EW_B7ammqXYP-97qI_F-f3w8vs-nZ0NTy9znROKp5xUcnSAJekLEQBgmgha6AEKEDDmBTa1A3hlJkiZ1MJRdeWjOla1kY2Jue76KDPXcTQXZBaNbfJgHPaQ1gmRUtaVVIUHXjcgyaGlCJM1SLauY4rRYla_1t9_XeH8x7_Zx2svmXVZDwcU0LZ2sp6y6YWXj4tHZ9UKbgo1ORmpEa_SP6b30k15m8URJKy</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>16199875</pqid></control><display><type>article</type><title>Determining in-channel (dead zone) transient storage by comparing solute transport in a bedrock channel-alluvial channel sequence, Oregon</title><source>Wiley Online Library AGU Free Content</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library All Journals</source><creator>Gooseff, Michael N. ; LaNier, Justin ; Haggerty, Roy ; Kokkeler, Kenneth</creator><creatorcontrib>Gooseff, Michael N. ; LaNier, Justin ; Haggerty, Roy ; Kokkeler, Kenneth</creatorcontrib><description>Current stream tracer techniques do not allow separation of in‐channel dead zone (e.g., eddies) and out‐of‐channel (hyporheic) transient storage, yet this separation is important to understanding stream biogeochemical processes. We characterize in‐channel transient storage with a rhodamine WT solute tracer experiment in a 304 m cascade‐pool‐type bedrock reach with no hyporheic zone. We compare the solute breakthrough curve (BTC) from this reach to that of an adjacent 367 m alluvial reach with significant hyporheic exchange. In the bedrock reach, transient storage has an exponential residence time distribution with a mean residence time of 3.0 hours and a ratio of transient storage to stream volume of 0.14, demonstrating that at moderate discharge, bedrock in‐channel storage zones provide a small volume of transient storage with substantial residence time. In the alluvial reach, though pools are similar in size to those in the bedrock reach, transient storage has a power law residence time distribution with a mean residence time of &gt;100 hours (estimated at nearly 1200 hours) and a ratio of storage to stream volume of 105. Because the in‐channel hydraulics of bedrock reaches are simpler than alluvial step‐pool reaches, the bedrock results are probably a lower end‐member with respect to volume and residence time, though they demonstrate that in‐channel storage may be appreciable in some reaches. These results suggest that in‐stream dead zone transient storage may be accurately simulated by exponential RTDs but that hyporheic exchange is better simulated with a power law RTD as a consequence of more complicated flow path and exchange dynamics.</description><identifier>ISSN: 0043-1397</identifier><identifier>EISSN: 1944-7973</identifier><identifier>DOI: 10.1029/2004WR003513</identifier><language>eng</language><publisher>Blackwell Publishing Ltd</publisher><subject>bedrock channel ; dead zone ; Freshwater ; H.J. Andrews Experimental Forest ; hyporheic exchange ; residence time distribution ; transient storage</subject><ispartof>Water resources research, 2005-06, Vol.41 (6), p.n/a</ispartof><rights>Copyright 2005 by the American Geophysical Union.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a4093-37986ce3806575e70a78be10e1eed2287acbd0312c542f8e5312622ab8bc8dc43</citedby><cites>FETCH-LOGICAL-a4093-37986ce3806575e70a78be10e1eed2287acbd0312c542f8e5312622ab8bc8dc43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2004WR003513$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2004WR003513$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,11514,27924,27925,45574,45575,46468,46892</link.rule.ids></links><search><creatorcontrib>Gooseff, Michael N.</creatorcontrib><creatorcontrib>LaNier, Justin</creatorcontrib><creatorcontrib>Haggerty, Roy</creatorcontrib><creatorcontrib>Kokkeler, Kenneth</creatorcontrib><title>Determining in-channel (dead zone) transient storage by comparing solute transport in a bedrock channel-alluvial channel sequence, Oregon</title><title>Water resources research</title><addtitle>Water Resour. Res</addtitle><description>Current stream tracer techniques do not allow separation of in‐channel dead zone (e.g., eddies) and out‐of‐channel (hyporheic) transient storage, yet this separation is important to understanding stream biogeochemical processes. We characterize in‐channel transient storage with a rhodamine WT solute tracer experiment in a 304 m cascade‐pool‐type bedrock reach with no hyporheic zone. We compare the solute breakthrough curve (BTC) from this reach to that of an adjacent 367 m alluvial reach with significant hyporheic exchange. In the bedrock reach, transient storage has an exponential residence time distribution with a mean residence time of 3.0 hours and a ratio of transient storage to stream volume of 0.14, demonstrating that at moderate discharge, bedrock in‐channel storage zones provide a small volume of transient storage with substantial residence time. In the alluvial reach, though pools are similar in size to those in the bedrock reach, transient storage has a power law residence time distribution with a mean residence time of &gt;100 hours (estimated at nearly 1200 hours) and a ratio of storage to stream volume of 105. Because the in‐channel hydraulics of bedrock reaches are simpler than alluvial step‐pool reaches, the bedrock results are probably a lower end‐member with respect to volume and residence time, though they demonstrate that in‐channel storage may be appreciable in some reaches. These results suggest that in‐stream dead zone transient storage may be accurately simulated by exponential RTDs but that hyporheic exchange is better simulated with a power law RTD as a consequence of more complicated flow path and exchange dynamics.</description><subject>bedrock channel</subject><subject>dead zone</subject><subject>Freshwater</subject><subject>H.J. Andrews Experimental Forest</subject><subject>hyporheic exchange</subject><subject>residence time distribution</subject><subject>transient storage</subject><issn>0043-1397</issn><issn>1944-7973</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNp9kE1P4zAQhi0EEuXjtj_AJwQSWfyRxM4RFShoESwVqx4tx5kWg2sXO92l_IP916QKIE6cZjTzPK9Gg9APSn5SwqoTRkg-GRPCC8o30IBWeZ6JSvBNNOg2PKO8EttoJ6VHQmhelGKA_p9BC3FuvfUzbH1mHrT34PBhA7rBr8HDEW6j9smCb3FqQ9QzwPUKmzBf6Li2UnDLFnpqEWLbxWCNa2hiME_4PTDTzi3_Wu0-BjjB8xK8gWN8G2EW_B7ammqXYP-97qI_F-f3w8vs-nZ0NTy9znROKp5xUcnSAJekLEQBgmgha6AEKEDDmBTa1A3hlJkiZ1MJRdeWjOla1kY2Jue76KDPXcTQXZBaNbfJgHPaQ1gmRUtaVVIUHXjcgyaGlCJM1SLauY4rRYla_1t9_XeH8x7_Zx2svmXVZDwcU0LZ2sp6y6YWXj4tHZ9UKbgo1ORmpEa_SP6b30k15m8URJKy</recordid><startdate>200506</startdate><enddate>200506</enddate><creator>Gooseff, Michael N.</creator><creator>LaNier, Justin</creator><creator>Haggerty, Roy</creator><creator>Kokkeler, Kenneth</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7TV</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope></search><sort><creationdate>200506</creationdate><title>Determining in-channel (dead zone) transient storage by comparing solute transport in a bedrock channel-alluvial channel sequence, Oregon</title><author>Gooseff, Michael N. ; LaNier, Justin ; Haggerty, Roy ; Kokkeler, Kenneth</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a4093-37986ce3806575e70a78be10e1eed2287acbd0312c542f8e5312622ab8bc8dc43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>bedrock channel</topic><topic>dead zone</topic><topic>Freshwater</topic><topic>H.J. Andrews Experimental Forest</topic><topic>hyporheic exchange</topic><topic>residence time distribution</topic><topic>transient storage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gooseff, Michael N.</creatorcontrib><creatorcontrib>LaNier, Justin</creatorcontrib><creatorcontrib>Haggerty, Roy</creatorcontrib><creatorcontrib>Kokkeler, Kenneth</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Pollution Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Water resources research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gooseff, Michael N.</au><au>LaNier, Justin</au><au>Haggerty, Roy</au><au>Kokkeler, Kenneth</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Determining in-channel (dead zone) transient storage by comparing solute transport in a bedrock channel-alluvial channel sequence, Oregon</atitle><jtitle>Water resources research</jtitle><addtitle>Water Resour. Res</addtitle><date>2005-06</date><risdate>2005</risdate><volume>41</volume><issue>6</issue><epage>n/a</epage><issn>0043-1397</issn><eissn>1944-7973</eissn><abstract>Current stream tracer techniques do not allow separation of in‐channel dead zone (e.g., eddies) and out‐of‐channel (hyporheic) transient storage, yet this separation is important to understanding stream biogeochemical processes. We characterize in‐channel transient storage with a rhodamine WT solute tracer experiment in a 304 m cascade‐pool‐type bedrock reach with no hyporheic zone. We compare the solute breakthrough curve (BTC) from this reach to that of an adjacent 367 m alluvial reach with significant hyporheic exchange. In the bedrock reach, transient storage has an exponential residence time distribution with a mean residence time of 3.0 hours and a ratio of transient storage to stream volume of 0.14, demonstrating that at moderate discharge, bedrock in‐channel storage zones provide a small volume of transient storage with substantial residence time. In the alluvial reach, though pools are similar in size to those in the bedrock reach, transient storage has a power law residence time distribution with a mean residence time of &gt;100 hours (estimated at nearly 1200 hours) and a ratio of storage to stream volume of 105. Because the in‐channel hydraulics of bedrock reaches are simpler than alluvial step‐pool reaches, the bedrock results are probably a lower end‐member with respect to volume and residence time, though they demonstrate that in‐channel storage may be appreciable in some reaches. These results suggest that in‐stream dead zone transient storage may be accurately simulated by exponential RTDs but that hyporheic exchange is better simulated with a power law RTD as a consequence of more complicated flow path and exchange dynamics.</abstract><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2004WR003513</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0043-1397
ispartof Water resources research, 2005-06, Vol.41 (6), p.n/a
issn 0043-1397
1944-7973
language eng
recordid cdi_proquest_miscellaneous_16199875
source Wiley Online Library AGU Free Content; EZB-FREE-00999 freely available EZB journals; Wiley Online Library All Journals
subjects bedrock channel
dead zone
Freshwater
H.J. Andrews Experimental Forest
hyporheic exchange
residence time distribution
transient storage
title Determining in-channel (dead zone) transient storage by comparing solute transport in a bedrock channel-alluvial channel sequence, Oregon
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T22%3A17%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Determining%20in-channel%20(dead%20zone)%20transient%20storage%20by%20comparing%20solute%20transport%20in%20a%20bedrock%20channel-alluvial%20channel%20sequence,%20Oregon&rft.jtitle=Water%20resources%20research&rft.au=Gooseff,%20Michael%20N.&rft.date=2005-06&rft.volume=41&rft.issue=6&rft.epage=n/a&rft.issn=0043-1397&rft.eissn=1944-7973&rft_id=info:doi/10.1029/2004WR003513&rft_dat=%3Cproquest_cross%3E16199875%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=16199875&rft_id=info:pmid/&rfr_iscdi=true