An integrated molecular dynamics, principal component analysis and residue interaction network approach reveals the impact of M184V mutation on HIV reverse transcriptase resistance to lamivudine

The emergence of different drug resistant strains of HIV-1 reverse transcriptase (HIV RT) remains of prime interest in relation to viral pathogenesis as well as drug development. Amongst those mutations, M184V was found to cause a complete loss of ligand fitness. In this study, we report the first a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular bioSystems 2014-01, Vol.10 (8), p.2215-2228
Hauptverfasser: Bhakat, Soumendranath, Martin, Alberto J M, Soliman, Mahmoud E S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2228
container_issue 8
container_start_page 2215
container_title Molecular bioSystems
container_volume 10
creator Bhakat, Soumendranath
Martin, Alberto J M
Soliman, Mahmoud E S
description The emergence of different drug resistant strains of HIV-1 reverse transcriptase (HIV RT) remains of prime interest in relation to viral pathogenesis as well as drug development. Amongst those mutations, M184V was found to cause a complete loss of ligand fitness. In this study, we report the first account of the molecular impact of M184V mutation on HIV RT resistance to 3TC (lamivudine) using an integrated computational approach. This involved molecular dynamics simulation, binding free energy analysis, principle component analysis (PCA) and residue interaction networks (RINs). Results clearly confirmed that M184V mutation leads to steric conflict between 3TC and the beta branched side chain of valine, decreases the ligand (3TC) binding affinity by ∼7 kcal mol(-1) when compared to the wild type, changes the overall conformational landscape of the protein and distorts the native enzyme residue-residue interaction network. The comprehensive molecular insight gained from this study should be of great importance in understanding drug resistance against HIV RT as well as assisting in the design of novel reverse transcriptase inhibitors with high ligand efficacy on resistant strains.
doi_str_mv 10.1039/c4mb00253a
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1618156413</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1618156413</sourcerecordid><originalsourceid>FETCH-LOGICAL-c427t-1559f4dcb9ef1a8f98476a86828ea9eb50d39ad525d13c1c99739413881e13083</originalsourceid><addsrcrecordid>eNqFkc9u1DAQxiNERUvhwgMgHxFiwX8T-7hdAa3UqheouEWz9oQaEjvYTtG-Xp8Md1t6rWTJM_Jvvpnx1zRvGP3IqDCfrJy2lHIl4FlzxDrJV5wq9vwxbn8cNi9z_kWp0JLRF80hl0awjquj5nYdiA8FfyYo6MgUR7TLCIm4XYDJ2_yBzMkH62cYiY3THAOGQiDAuMs-18CRhNm7Bfc6CWzxMZCA5W9MvwnMc4pgryt0gzBmUq4rOM0VI3EgF0zLKzItBfZV9ZyeXe3ZlJGUBCHb5OcCNbtrkwsEWx8iGet0N4vzAV81B0NVxtcP93Hz_cvnb5vT1fnl17PN-nxlJe_KiillBuns1uDAQA9Gy64F3WquEQxuFXXCgFNcOSYss8Z0wkgmtGbIBNXiuHl3r1s3-rNgLv3ks8VxhIBxyT1rmWaqrSVPo0ryVvHauqLv71GbYs4Jh77-9wRp1zPa39nbb-TFyd7edYXfPugu2wndI_rfT_EP04OkAA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1542652828</pqid></control><display><type>article</type><title>An integrated molecular dynamics, principal component analysis and residue interaction network approach reveals the impact of M184V mutation on HIV reverse transcriptase resistance to lamivudine</title><source>MEDLINE</source><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Bhakat, Soumendranath ; Martin, Alberto J M ; Soliman, Mahmoud E S</creator><creatorcontrib>Bhakat, Soumendranath ; Martin, Alberto J M ; Soliman, Mahmoud E S</creatorcontrib><description>The emergence of different drug resistant strains of HIV-1 reverse transcriptase (HIV RT) remains of prime interest in relation to viral pathogenesis as well as drug development. Amongst those mutations, M184V was found to cause a complete loss of ligand fitness. In this study, we report the first account of the molecular impact of M184V mutation on HIV RT resistance to 3TC (lamivudine) using an integrated computational approach. This involved molecular dynamics simulation, binding free energy analysis, principle component analysis (PCA) and residue interaction networks (RINs). Results clearly confirmed that M184V mutation leads to steric conflict between 3TC and the beta branched side chain of valine, decreases the ligand (3TC) binding affinity by ∼7 kcal mol(-1) when compared to the wild type, changes the overall conformational landscape of the protein and distorts the native enzyme residue-residue interaction network. The comprehensive molecular insight gained from this study should be of great importance in understanding drug resistance against HIV RT as well as assisting in the design of novel reverse transcriptase inhibitors with high ligand efficacy on resistant strains.</description><identifier>ISSN: 1742-206X</identifier><identifier>EISSN: 1742-2051</identifier><identifier>DOI: 10.1039/c4mb00253a</identifier><identifier>PMID: 24931725</identifier><language>eng</language><publisher>England</publisher><subject>Amino Acid Substitution ; Anti-HIV Agents - chemistry ; Computational Biology - methods ; Drug Resistance, Viral ; HIV Reverse Transcriptase - chemistry ; HIV Reverse Transcriptase - genetics ; Human immunodeficiency virus 1 ; Lamivudine - chemistry ; Methionine - metabolism ; Molecular Dynamics Simulation ; Mutation ; Principal Component Analysis ; Protein Structure, Secondary ; Quantitative Structure-Activity Relationship ; Valine - metabolism</subject><ispartof>Molecular bioSystems, 2014-01, Vol.10 (8), p.2215-2228</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c427t-1559f4dcb9ef1a8f98476a86828ea9eb50d39ad525d13c1c99739413881e13083</citedby><cites>FETCH-LOGICAL-c427t-1559f4dcb9ef1a8f98476a86828ea9eb50d39ad525d13c1c99739413881e13083</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27907,27908</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24931725$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bhakat, Soumendranath</creatorcontrib><creatorcontrib>Martin, Alberto J M</creatorcontrib><creatorcontrib>Soliman, Mahmoud E S</creatorcontrib><title>An integrated molecular dynamics, principal component analysis and residue interaction network approach reveals the impact of M184V mutation on HIV reverse transcriptase resistance to lamivudine</title><title>Molecular bioSystems</title><addtitle>Mol Biosyst</addtitle><description>The emergence of different drug resistant strains of HIV-1 reverse transcriptase (HIV RT) remains of prime interest in relation to viral pathogenesis as well as drug development. Amongst those mutations, M184V was found to cause a complete loss of ligand fitness. In this study, we report the first account of the molecular impact of M184V mutation on HIV RT resistance to 3TC (lamivudine) using an integrated computational approach. This involved molecular dynamics simulation, binding free energy analysis, principle component analysis (PCA) and residue interaction networks (RINs). Results clearly confirmed that M184V mutation leads to steric conflict between 3TC and the beta branched side chain of valine, decreases the ligand (3TC) binding affinity by ∼7 kcal mol(-1) when compared to the wild type, changes the overall conformational landscape of the protein and distorts the native enzyme residue-residue interaction network. The comprehensive molecular insight gained from this study should be of great importance in understanding drug resistance against HIV RT as well as assisting in the design of novel reverse transcriptase inhibitors with high ligand efficacy on resistant strains.</description><subject>Amino Acid Substitution</subject><subject>Anti-HIV Agents - chemistry</subject><subject>Computational Biology - methods</subject><subject>Drug Resistance, Viral</subject><subject>HIV Reverse Transcriptase - chemistry</subject><subject>HIV Reverse Transcriptase - genetics</subject><subject>Human immunodeficiency virus 1</subject><subject>Lamivudine - chemistry</subject><subject>Methionine - metabolism</subject><subject>Molecular Dynamics Simulation</subject><subject>Mutation</subject><subject>Principal Component Analysis</subject><subject>Protein Structure, Secondary</subject><subject>Quantitative Structure-Activity Relationship</subject><subject>Valine - metabolism</subject><issn>1742-206X</issn><issn>1742-2051</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc9u1DAQxiNERUvhwgMgHxFiwX8T-7hdAa3UqheouEWz9oQaEjvYTtG-Xp8Md1t6rWTJM_Jvvpnx1zRvGP3IqDCfrJy2lHIl4FlzxDrJV5wq9vwxbn8cNi9z_kWp0JLRF80hl0awjquj5nYdiA8FfyYo6MgUR7TLCIm4XYDJ2_yBzMkH62cYiY3THAOGQiDAuMs-18CRhNm7Bfc6CWzxMZCA5W9MvwnMc4pgryt0gzBmUq4rOM0VI3EgF0zLKzItBfZV9ZyeXe3ZlJGUBCHb5OcCNbtrkwsEWx8iGet0N4vzAV81B0NVxtcP93Hz_cvnb5vT1fnl17PN-nxlJe_KiillBuns1uDAQA9Gy64F3WquEQxuFXXCgFNcOSYss8Z0wkgmtGbIBNXiuHl3r1s3-rNgLv3ks8VxhIBxyT1rmWaqrSVPo0ryVvHauqLv71GbYs4Jh77-9wRp1zPa39nbb-TFyd7edYXfPugu2wndI_rfT_EP04OkAA</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Bhakat, Soumendranath</creator><creator>Martin, Alberto J M</creator><creator>Soliman, Mahmoud E S</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7U9</scope><scope>H94</scope></search><sort><creationdate>20140101</creationdate><title>An integrated molecular dynamics, principal component analysis and residue interaction network approach reveals the impact of M184V mutation on HIV reverse transcriptase resistance to lamivudine</title><author>Bhakat, Soumendranath ; Martin, Alberto J M ; Soliman, Mahmoud E S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c427t-1559f4dcb9ef1a8f98476a86828ea9eb50d39ad525d13c1c99739413881e13083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Amino Acid Substitution</topic><topic>Anti-HIV Agents - chemistry</topic><topic>Computational Biology - methods</topic><topic>Drug Resistance, Viral</topic><topic>HIV Reverse Transcriptase - chemistry</topic><topic>HIV Reverse Transcriptase - genetics</topic><topic>Human immunodeficiency virus 1</topic><topic>Lamivudine - chemistry</topic><topic>Methionine - metabolism</topic><topic>Molecular Dynamics Simulation</topic><topic>Mutation</topic><topic>Principal Component Analysis</topic><topic>Protein Structure, Secondary</topic><topic>Quantitative Structure-Activity Relationship</topic><topic>Valine - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bhakat, Soumendranath</creatorcontrib><creatorcontrib>Martin, Alberto J M</creatorcontrib><creatorcontrib>Soliman, Mahmoud E S</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Virology and AIDS Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><jtitle>Molecular bioSystems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bhakat, Soumendranath</au><au>Martin, Alberto J M</au><au>Soliman, Mahmoud E S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An integrated molecular dynamics, principal component analysis and residue interaction network approach reveals the impact of M184V mutation on HIV reverse transcriptase resistance to lamivudine</atitle><jtitle>Molecular bioSystems</jtitle><addtitle>Mol Biosyst</addtitle><date>2014-01-01</date><risdate>2014</risdate><volume>10</volume><issue>8</issue><spage>2215</spage><epage>2228</epage><pages>2215-2228</pages><issn>1742-206X</issn><eissn>1742-2051</eissn><abstract>The emergence of different drug resistant strains of HIV-1 reverse transcriptase (HIV RT) remains of prime interest in relation to viral pathogenesis as well as drug development. Amongst those mutations, M184V was found to cause a complete loss of ligand fitness. In this study, we report the first account of the molecular impact of M184V mutation on HIV RT resistance to 3TC (lamivudine) using an integrated computational approach. This involved molecular dynamics simulation, binding free energy analysis, principle component analysis (PCA) and residue interaction networks (RINs). Results clearly confirmed that M184V mutation leads to steric conflict between 3TC and the beta branched side chain of valine, decreases the ligand (3TC) binding affinity by ∼7 kcal mol(-1) when compared to the wild type, changes the overall conformational landscape of the protein and distorts the native enzyme residue-residue interaction network. The comprehensive molecular insight gained from this study should be of great importance in understanding drug resistance against HIV RT as well as assisting in the design of novel reverse transcriptase inhibitors with high ligand efficacy on resistant strains.</abstract><cop>England</cop><pmid>24931725</pmid><doi>10.1039/c4mb00253a</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1742-206X
ispartof Molecular bioSystems, 2014-01, Vol.10 (8), p.2215-2228
issn 1742-206X
1742-2051
language eng
recordid cdi_proquest_miscellaneous_1618156413
source MEDLINE; Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Amino Acid Substitution
Anti-HIV Agents - chemistry
Computational Biology - methods
Drug Resistance, Viral
HIV Reverse Transcriptase - chemistry
HIV Reverse Transcriptase - genetics
Human immunodeficiency virus 1
Lamivudine - chemistry
Methionine - metabolism
Molecular Dynamics Simulation
Mutation
Principal Component Analysis
Protein Structure, Secondary
Quantitative Structure-Activity Relationship
Valine - metabolism
title An integrated molecular dynamics, principal component analysis and residue interaction network approach reveals the impact of M184V mutation on HIV reverse transcriptase resistance to lamivudine
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T01%3A08%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20integrated%20molecular%20dynamics,%20principal%20component%20analysis%20and%20residue%20interaction%20network%20approach%20reveals%20the%20impact%20of%20M184V%20mutation%20on%20HIV%20reverse%20transcriptase%20resistance%20to%20lamivudine&rft.jtitle=Molecular%20bioSystems&rft.au=Bhakat,%20Soumendranath&rft.date=2014-01-01&rft.volume=10&rft.issue=8&rft.spage=2215&rft.epage=2228&rft.pages=2215-2228&rft.issn=1742-206X&rft.eissn=1742-2051&rft_id=info:doi/10.1039/c4mb00253a&rft_dat=%3Cproquest_cross%3E1618156413%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1542652828&rft_id=info:pmid/24931725&rfr_iscdi=true