Metabolic engineering of Saccharomyces cerevisiae for itaconic acid production

Renewable alternatives for petroleum-derived chemicals are achievable through biosynthetic production. Here, we utilize Saccharomyces cerevisiae to enable the synthesis of itaconic acid, a molecule with diverse applications as a petrochemical replacement. We first optimize pathway expression within...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied microbiology and biotechnology 2014-10, Vol.98 (19), p.8155-8164
Hauptverfasser: Blazeck, John, Miller, Jarrett, Pan, Anny, Gengler, Jon, Holden, Clinton, Jamoussi, Mariam, Alper, Hal S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8164
container_issue 19
container_start_page 8155
container_title Applied microbiology and biotechnology
container_volume 98
creator Blazeck, John
Miller, Jarrett
Pan, Anny
Gengler, Jon
Holden, Clinton
Jamoussi, Mariam
Alper, Hal S
description Renewable alternatives for petroleum-derived chemicals are achievable through biosynthetic production. Here, we utilize Saccharomyces cerevisiae to enable the synthesis of itaconic acid, a molecule with diverse applications as a petrochemical replacement. We first optimize pathway expression within S. cerevisiae through the use of a hybrid promoter. Next, we utilize sequential, in silico computational genome-scanning to identify beneficial genetic perturbations that are metabolically distant from the itaconic acid synthesis pathway. In this manner, we successfully identify three non-obvious genetic targets (∆ade3 ∆bna2 ∆tes1) that successively improve itaconic acid titer. We establish that focused manipulations of upstream pathway enzymes (localized refactoring) and enzyme re-localization to both mitochondria and cytosol fail to improve itaconic acid titers. Finally, we establish a higher cell density fermentation that ultimately achieves itaconic acid titer of 168 mg/L, a sevenfold improvement over initial conditions. This work represents an attempt to increase itaconic acid production in yeast and demonstrates the successful utilization of computationally guided genetic manipulation to increase metabolic capacity.
doi_str_mv 10.1007/s00253-014-5895-0
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1618155848</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A385799817</galeid><sourcerecordid>A385799817</sourcerecordid><originalsourceid>FETCH-LOGICAL-c567t-d0f09a80d2e079628efc3a2e35cf16df1836a032ce828364fd720fab4bc5b2da3</originalsourceid><addsrcrecordid>eNqFkktrFTEYhoMo9lj9AW50wI0upuYyuS1LsVqoCh67DpnMlzFlzuSYzIj9980w9XJElCwSwvO84QsvQk8JPiEYy9cZY8pZjUlTc6V5je-hDWkYrbEgzX20wUTyWnKtjtCjnK8xJlQJ8RAd0UZrSYjaoA_vYbJtHIKrYOzDCJDC2FfRV1vr3Beb4u7GQa4cJPgWcrBQ-ZiqMFkXxyJZF7pqn2I3uynE8TF64O2Q4cndfoyuzt98PntXX358e3F2elk7LuRUd9hjbRXuKGCpBVXgHbMUGHeeiM4TxYTFjDpQtBwb30mKvW2b1vGWdpYdo5drbnn66wx5MruQHQyDHSHO2RBBFOFcNer_KBe0YUUgBX3xB3od5zSWQRaqJGol-S-qtwOYMPo4JeuWUHPKFJdaKyILdfIXqqwOdqH8HfhQ7g-EVwdCYSb4PvV2ztlcbD8dsmRlXYo5J_Bmn8LOphtDsFmqYdZqmFINs1TD4OI8uxtubnfQ_TR-dKEAdAXyfukApN-m_0fq81XyNhrbp5DN1ZYWoJRNCawpuwVBSsnU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1561819875</pqid></control><display><type>article</type><title>Metabolic engineering of Saccharomyces cerevisiae for itaconic acid production</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Blazeck, John ; Miller, Jarrett ; Pan, Anny ; Gengler, Jon ; Holden, Clinton ; Jamoussi, Mariam ; Alper, Hal S</creator><creatorcontrib>Blazeck, John ; Miller, Jarrett ; Pan, Anny ; Gengler, Jon ; Holden, Clinton ; Jamoussi, Mariam ; Alper, Hal S</creatorcontrib><description>Renewable alternatives for petroleum-derived chemicals are achievable through biosynthetic production. Here, we utilize Saccharomyces cerevisiae to enable the synthesis of itaconic acid, a molecule with diverse applications as a petrochemical replacement. We first optimize pathway expression within S. cerevisiae through the use of a hybrid promoter. Next, we utilize sequential, in silico computational genome-scanning to identify beneficial genetic perturbations that are metabolically distant from the itaconic acid synthesis pathway. In this manner, we successfully identify three non-obvious genetic targets (∆ade3 ∆bna2 ∆tes1) that successively improve itaconic acid titer. We establish that focused manipulations of upstream pathway enzymes (localized refactoring) and enzyme re-localization to both mitochondria and cytosol fail to improve itaconic acid titers. Finally, we establish a higher cell density fermentation that ultimately achieves itaconic acid titer of 168 mg/L, a sevenfold improvement over initial conditions. This work represents an attempt to increase itaconic acid production in yeast and demonstrates the successful utilization of computationally guided genetic manipulation to increase metabolic capacity.</description><identifier>ISSN: 0175-7598</identifier><identifier>EISSN: 1432-0614</identifier><identifier>DOI: 10.1007/s00253-014-5895-0</identifier><identifier>PMID: 24997118</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Acid production ; Acids ; Biomedical and Life Sciences ; Biosynthetic Pathways ; Biotechnological Products and Process Engineering ; Biotechnology ; Brewer's yeast ; Cellular biology ; cytosol ; E coli ; Enzymes ; Fermentation ; Genetic aspects ; Genetic engineering ; Genomes ; Genomics ; Glucose ; Life Sciences ; Metabolic Engineering ; Metabolism ; Microbial Genetics and Genomics ; Microbiology ; mitochondria ; Petrochemicals ; Petroleum ; Petroleum engineering ; Physiological aspects ; Plasmids ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - metabolism ; Saccharomyces cerevisiae Proteins - genetics ; Saccharomyces cerevisiae Proteins - metabolism ; Shear stress ; Studies ; Succinates - metabolism ; Yeast ; Yeasts</subject><ispartof>Applied microbiology and biotechnology, 2014-10, Vol.98 (19), p.8155-8164</ispartof><rights>Springer-Verlag Berlin Heidelberg 2014</rights><rights>COPYRIGHT 2014 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c567t-d0f09a80d2e079628efc3a2e35cf16df1836a032ce828364fd720fab4bc5b2da3</citedby><cites>FETCH-LOGICAL-c567t-d0f09a80d2e079628efc3a2e35cf16df1836a032ce828364fd720fab4bc5b2da3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00253-014-5895-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00253-014-5895-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24997118$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Blazeck, John</creatorcontrib><creatorcontrib>Miller, Jarrett</creatorcontrib><creatorcontrib>Pan, Anny</creatorcontrib><creatorcontrib>Gengler, Jon</creatorcontrib><creatorcontrib>Holden, Clinton</creatorcontrib><creatorcontrib>Jamoussi, Mariam</creatorcontrib><creatorcontrib>Alper, Hal S</creatorcontrib><title>Metabolic engineering of Saccharomyces cerevisiae for itaconic acid production</title><title>Applied microbiology and biotechnology</title><addtitle>Appl Microbiol Biotechnol</addtitle><addtitle>Appl Microbiol Biotechnol</addtitle><description>Renewable alternatives for petroleum-derived chemicals are achievable through biosynthetic production. Here, we utilize Saccharomyces cerevisiae to enable the synthesis of itaconic acid, a molecule with diverse applications as a petrochemical replacement. We first optimize pathway expression within S. cerevisiae through the use of a hybrid promoter. Next, we utilize sequential, in silico computational genome-scanning to identify beneficial genetic perturbations that are metabolically distant from the itaconic acid synthesis pathway. In this manner, we successfully identify three non-obvious genetic targets (∆ade3 ∆bna2 ∆tes1) that successively improve itaconic acid titer. We establish that focused manipulations of upstream pathway enzymes (localized refactoring) and enzyme re-localization to both mitochondria and cytosol fail to improve itaconic acid titers. Finally, we establish a higher cell density fermentation that ultimately achieves itaconic acid titer of 168 mg/L, a sevenfold improvement over initial conditions. This work represents an attempt to increase itaconic acid production in yeast and demonstrates the successful utilization of computationally guided genetic manipulation to increase metabolic capacity.</description><subject>Acid production</subject><subject>Acids</subject><subject>Biomedical and Life Sciences</subject><subject>Biosynthetic Pathways</subject><subject>Biotechnological Products and Process Engineering</subject><subject>Biotechnology</subject><subject>Brewer's yeast</subject><subject>Cellular biology</subject><subject>cytosol</subject><subject>E coli</subject><subject>Enzymes</subject><subject>Fermentation</subject><subject>Genetic aspects</subject><subject>Genetic engineering</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Glucose</subject><subject>Life Sciences</subject><subject>Metabolic Engineering</subject><subject>Metabolism</subject><subject>Microbial Genetics and Genomics</subject><subject>Microbiology</subject><subject>mitochondria</subject><subject>Petrochemicals</subject><subject>Petroleum</subject><subject>Petroleum engineering</subject><subject>Physiological aspects</subject><subject>Plasmids</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Shear stress</subject><subject>Studies</subject><subject>Succinates - metabolism</subject><subject>Yeast</subject><subject>Yeasts</subject><issn>0175-7598</issn><issn>1432-0614</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkktrFTEYhoMo9lj9AW50wI0upuYyuS1LsVqoCh67DpnMlzFlzuSYzIj9980w9XJElCwSwvO84QsvQk8JPiEYy9cZY8pZjUlTc6V5je-hDWkYrbEgzX20wUTyWnKtjtCjnK8xJlQJ8RAd0UZrSYjaoA_vYbJtHIKrYOzDCJDC2FfRV1vr3Beb4u7GQa4cJPgWcrBQ-ZiqMFkXxyJZF7pqn2I3uynE8TF64O2Q4cndfoyuzt98PntXX358e3F2elk7LuRUd9hjbRXuKGCpBVXgHbMUGHeeiM4TxYTFjDpQtBwb30mKvW2b1vGWdpYdo5drbnn66wx5MruQHQyDHSHO2RBBFOFcNer_KBe0YUUgBX3xB3od5zSWQRaqJGol-S-qtwOYMPo4JeuWUHPKFJdaKyILdfIXqqwOdqH8HfhQ7g-EVwdCYSb4PvV2ztlcbD8dsmRlXYo5J_Bmn8LOphtDsFmqYdZqmFINs1TD4OI8uxtubnfQ_TR-dKEAdAXyfukApN-m_0fq81XyNhrbp5DN1ZYWoJRNCawpuwVBSsnU</recordid><startdate>20141001</startdate><enddate>20141001</enddate><creator>Blazeck, John</creator><creator>Miller, Jarrett</creator><creator>Pan, Anny</creator><creator>Gengler, Jon</creator><creator>Holden, Clinton</creator><creator>Jamoussi, Mariam</creator><creator>Alper, Hal S</creator><general>Springer-Verlag</general><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7T7</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>LK8</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>7QO</scope></search><sort><creationdate>20141001</creationdate><title>Metabolic engineering of Saccharomyces cerevisiae for itaconic acid production</title><author>Blazeck, John ; Miller, Jarrett ; Pan, Anny ; Gengler, Jon ; Holden, Clinton ; Jamoussi, Mariam ; Alper, Hal S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c567t-d0f09a80d2e079628efc3a2e35cf16df1836a032ce828364fd720fab4bc5b2da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Acid production</topic><topic>Acids</topic><topic>Biomedical and Life Sciences</topic><topic>Biosynthetic Pathways</topic><topic>Biotechnological Products and Process Engineering</topic><topic>Biotechnology</topic><topic>Brewer's yeast</topic><topic>Cellular biology</topic><topic>cytosol</topic><topic>E coli</topic><topic>Enzymes</topic><topic>Fermentation</topic><topic>Genetic aspects</topic><topic>Genetic engineering</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Glucose</topic><topic>Life Sciences</topic><topic>Metabolic Engineering</topic><topic>Metabolism</topic><topic>Microbial Genetics and Genomics</topic><topic>Microbiology</topic><topic>mitochondria</topic><topic>Petrochemicals</topic><topic>Petroleum</topic><topic>Petroleum engineering</topic><topic>Physiological aspects</topic><topic>Plasmids</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Shear stress</topic><topic>Studies</topic><topic>Succinates - metabolism</topic><topic>Yeast</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Blazeck, John</creatorcontrib><creatorcontrib>Miller, Jarrett</creatorcontrib><creatorcontrib>Pan, Anny</creatorcontrib><creatorcontrib>Gengler, Jon</creatorcontrib><creatorcontrib>Holden, Clinton</creatorcontrib><creatorcontrib>Jamoussi, Mariam</creatorcontrib><creatorcontrib>Alper, Hal S</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><jtitle>Applied microbiology and biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Blazeck, John</au><au>Miller, Jarrett</au><au>Pan, Anny</au><au>Gengler, Jon</au><au>Holden, Clinton</au><au>Jamoussi, Mariam</au><au>Alper, Hal S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metabolic engineering of Saccharomyces cerevisiae for itaconic acid production</atitle><jtitle>Applied microbiology and biotechnology</jtitle><stitle>Appl Microbiol Biotechnol</stitle><addtitle>Appl Microbiol Biotechnol</addtitle><date>2014-10-01</date><risdate>2014</risdate><volume>98</volume><issue>19</issue><spage>8155</spage><epage>8164</epage><pages>8155-8164</pages><issn>0175-7598</issn><eissn>1432-0614</eissn><abstract>Renewable alternatives for petroleum-derived chemicals are achievable through biosynthetic production. Here, we utilize Saccharomyces cerevisiae to enable the synthesis of itaconic acid, a molecule with diverse applications as a petrochemical replacement. We first optimize pathway expression within S. cerevisiae through the use of a hybrid promoter. Next, we utilize sequential, in silico computational genome-scanning to identify beneficial genetic perturbations that are metabolically distant from the itaconic acid synthesis pathway. In this manner, we successfully identify three non-obvious genetic targets (∆ade3 ∆bna2 ∆tes1) that successively improve itaconic acid titer. We establish that focused manipulations of upstream pathway enzymes (localized refactoring) and enzyme re-localization to both mitochondria and cytosol fail to improve itaconic acid titers. Finally, we establish a higher cell density fermentation that ultimately achieves itaconic acid titer of 168 mg/L, a sevenfold improvement over initial conditions. This work represents an attempt to increase itaconic acid production in yeast and demonstrates the successful utilization of computationally guided genetic manipulation to increase metabolic capacity.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><pmid>24997118</pmid><doi>10.1007/s00253-014-5895-0</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0175-7598
ispartof Applied microbiology and biotechnology, 2014-10, Vol.98 (19), p.8155-8164
issn 0175-7598
1432-0614
language eng
recordid cdi_proquest_miscellaneous_1618155848
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Acid production
Acids
Biomedical and Life Sciences
Biosynthetic Pathways
Biotechnological Products and Process Engineering
Biotechnology
Brewer's yeast
Cellular biology
cytosol
E coli
Enzymes
Fermentation
Genetic aspects
Genetic engineering
Genomes
Genomics
Glucose
Life Sciences
Metabolic Engineering
Metabolism
Microbial Genetics and Genomics
Microbiology
mitochondria
Petrochemicals
Petroleum
Petroleum engineering
Physiological aspects
Plasmids
Saccharomyces cerevisiae
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae - metabolism
Saccharomyces cerevisiae Proteins - genetics
Saccharomyces cerevisiae Proteins - metabolism
Shear stress
Studies
Succinates - metabolism
Yeast
Yeasts
title Metabolic engineering of Saccharomyces cerevisiae for itaconic acid production
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T15%3A40%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metabolic%20engineering%20of%20Saccharomyces%20cerevisiae%20for%20itaconic%20acid%20production&rft.jtitle=Applied%20microbiology%20and%20biotechnology&rft.au=Blazeck,%20John&rft.date=2014-10-01&rft.volume=98&rft.issue=19&rft.spage=8155&rft.epage=8164&rft.pages=8155-8164&rft.issn=0175-7598&rft.eissn=1432-0614&rft_id=info:doi/10.1007/s00253-014-5895-0&rft_dat=%3Cgale_proqu%3EA385799817%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1561819875&rft_id=info:pmid/24997118&rft_galeid=A385799817&rfr_iscdi=true