Metabolic engineering of Saccharomyces cerevisiae for itaconic acid production
Renewable alternatives for petroleum-derived chemicals are achievable through biosynthetic production. Here, we utilize Saccharomyces cerevisiae to enable the synthesis of itaconic acid, a molecule with diverse applications as a petrochemical replacement. We first optimize pathway expression within...
Gespeichert in:
Veröffentlicht in: | Applied microbiology and biotechnology 2014-10, Vol.98 (19), p.8155-8164 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8164 |
---|---|
container_issue | 19 |
container_start_page | 8155 |
container_title | Applied microbiology and biotechnology |
container_volume | 98 |
creator | Blazeck, John Miller, Jarrett Pan, Anny Gengler, Jon Holden, Clinton Jamoussi, Mariam Alper, Hal S |
description | Renewable alternatives for petroleum-derived chemicals are achievable through biosynthetic production. Here, we utilize Saccharomyces cerevisiae to enable the synthesis of itaconic acid, a molecule with diverse applications as a petrochemical replacement. We first optimize pathway expression within S. cerevisiae through the use of a hybrid promoter. Next, we utilize sequential, in silico computational genome-scanning to identify beneficial genetic perturbations that are metabolically distant from the itaconic acid synthesis pathway. In this manner, we successfully identify three non-obvious genetic targets (∆ade3 ∆bna2 ∆tes1) that successively improve itaconic acid titer. We establish that focused manipulations of upstream pathway enzymes (localized refactoring) and enzyme re-localization to both mitochondria and cytosol fail to improve itaconic acid titers. Finally, we establish a higher cell density fermentation that ultimately achieves itaconic acid titer of 168 mg/L, a sevenfold improvement over initial conditions. This work represents an attempt to increase itaconic acid production in yeast and demonstrates the successful utilization of computationally guided genetic manipulation to increase metabolic capacity. |
doi_str_mv | 10.1007/s00253-014-5895-0 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1618155848</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A385799817</galeid><sourcerecordid>A385799817</sourcerecordid><originalsourceid>FETCH-LOGICAL-c567t-d0f09a80d2e079628efc3a2e35cf16df1836a032ce828364fd720fab4bc5b2da3</originalsourceid><addsrcrecordid>eNqFkktrFTEYhoMo9lj9AW50wI0upuYyuS1LsVqoCh67DpnMlzFlzuSYzIj9980w9XJElCwSwvO84QsvQk8JPiEYy9cZY8pZjUlTc6V5je-hDWkYrbEgzX20wUTyWnKtjtCjnK8xJlQJ8RAd0UZrSYjaoA_vYbJtHIKrYOzDCJDC2FfRV1vr3Beb4u7GQa4cJPgWcrBQ-ZiqMFkXxyJZF7pqn2I3uynE8TF64O2Q4cndfoyuzt98PntXX358e3F2elk7LuRUd9hjbRXuKGCpBVXgHbMUGHeeiM4TxYTFjDpQtBwb30mKvW2b1vGWdpYdo5drbnn66wx5MruQHQyDHSHO2RBBFOFcNer_KBe0YUUgBX3xB3od5zSWQRaqJGol-S-qtwOYMPo4JeuWUHPKFJdaKyILdfIXqqwOdqH8HfhQ7g-EVwdCYSb4PvV2ztlcbD8dsmRlXYo5J_Bmn8LOphtDsFmqYdZqmFINs1TD4OI8uxtubnfQ_TR-dKEAdAXyfukApN-m_0fq81XyNhrbp5DN1ZYWoJRNCawpuwVBSsnU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1561819875</pqid></control><display><type>article</type><title>Metabolic engineering of Saccharomyces cerevisiae for itaconic acid production</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Blazeck, John ; Miller, Jarrett ; Pan, Anny ; Gengler, Jon ; Holden, Clinton ; Jamoussi, Mariam ; Alper, Hal S</creator><creatorcontrib>Blazeck, John ; Miller, Jarrett ; Pan, Anny ; Gengler, Jon ; Holden, Clinton ; Jamoussi, Mariam ; Alper, Hal S</creatorcontrib><description>Renewable alternatives for petroleum-derived chemicals are achievable through biosynthetic production. Here, we utilize Saccharomyces cerevisiae to enable the synthesis of itaconic acid, a molecule with diverse applications as a petrochemical replacement. We first optimize pathway expression within S. cerevisiae through the use of a hybrid promoter. Next, we utilize sequential, in silico computational genome-scanning to identify beneficial genetic perturbations that are metabolically distant from the itaconic acid synthesis pathway. In this manner, we successfully identify three non-obvious genetic targets (∆ade3 ∆bna2 ∆tes1) that successively improve itaconic acid titer. We establish that focused manipulations of upstream pathway enzymes (localized refactoring) and enzyme re-localization to both mitochondria and cytosol fail to improve itaconic acid titers. Finally, we establish a higher cell density fermentation that ultimately achieves itaconic acid titer of 168 mg/L, a sevenfold improvement over initial conditions. This work represents an attempt to increase itaconic acid production in yeast and demonstrates the successful utilization of computationally guided genetic manipulation to increase metabolic capacity.</description><identifier>ISSN: 0175-7598</identifier><identifier>EISSN: 1432-0614</identifier><identifier>DOI: 10.1007/s00253-014-5895-0</identifier><identifier>PMID: 24997118</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Acid production ; Acids ; Biomedical and Life Sciences ; Biosynthetic Pathways ; Biotechnological Products and Process Engineering ; Biotechnology ; Brewer's yeast ; Cellular biology ; cytosol ; E coli ; Enzymes ; Fermentation ; Genetic aspects ; Genetic engineering ; Genomes ; Genomics ; Glucose ; Life Sciences ; Metabolic Engineering ; Metabolism ; Microbial Genetics and Genomics ; Microbiology ; mitochondria ; Petrochemicals ; Petroleum ; Petroleum engineering ; Physiological aspects ; Plasmids ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - metabolism ; Saccharomyces cerevisiae Proteins - genetics ; Saccharomyces cerevisiae Proteins - metabolism ; Shear stress ; Studies ; Succinates - metabolism ; Yeast ; Yeasts</subject><ispartof>Applied microbiology and biotechnology, 2014-10, Vol.98 (19), p.8155-8164</ispartof><rights>Springer-Verlag Berlin Heidelberg 2014</rights><rights>COPYRIGHT 2014 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c567t-d0f09a80d2e079628efc3a2e35cf16df1836a032ce828364fd720fab4bc5b2da3</citedby><cites>FETCH-LOGICAL-c567t-d0f09a80d2e079628efc3a2e35cf16df1836a032ce828364fd720fab4bc5b2da3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00253-014-5895-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00253-014-5895-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24997118$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Blazeck, John</creatorcontrib><creatorcontrib>Miller, Jarrett</creatorcontrib><creatorcontrib>Pan, Anny</creatorcontrib><creatorcontrib>Gengler, Jon</creatorcontrib><creatorcontrib>Holden, Clinton</creatorcontrib><creatorcontrib>Jamoussi, Mariam</creatorcontrib><creatorcontrib>Alper, Hal S</creatorcontrib><title>Metabolic engineering of Saccharomyces cerevisiae for itaconic acid production</title><title>Applied microbiology and biotechnology</title><addtitle>Appl Microbiol Biotechnol</addtitle><addtitle>Appl Microbiol Biotechnol</addtitle><description>Renewable alternatives for petroleum-derived chemicals are achievable through biosynthetic production. Here, we utilize Saccharomyces cerevisiae to enable the synthesis of itaconic acid, a molecule with diverse applications as a petrochemical replacement. We first optimize pathway expression within S. cerevisiae through the use of a hybrid promoter. Next, we utilize sequential, in silico computational genome-scanning to identify beneficial genetic perturbations that are metabolically distant from the itaconic acid synthesis pathway. In this manner, we successfully identify three non-obvious genetic targets (∆ade3 ∆bna2 ∆tes1) that successively improve itaconic acid titer. We establish that focused manipulations of upstream pathway enzymes (localized refactoring) and enzyme re-localization to both mitochondria and cytosol fail to improve itaconic acid titers. Finally, we establish a higher cell density fermentation that ultimately achieves itaconic acid titer of 168 mg/L, a sevenfold improvement over initial conditions. This work represents an attempt to increase itaconic acid production in yeast and demonstrates the successful utilization of computationally guided genetic manipulation to increase metabolic capacity.</description><subject>Acid production</subject><subject>Acids</subject><subject>Biomedical and Life Sciences</subject><subject>Biosynthetic Pathways</subject><subject>Biotechnological Products and Process Engineering</subject><subject>Biotechnology</subject><subject>Brewer's yeast</subject><subject>Cellular biology</subject><subject>cytosol</subject><subject>E coli</subject><subject>Enzymes</subject><subject>Fermentation</subject><subject>Genetic aspects</subject><subject>Genetic engineering</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Glucose</subject><subject>Life Sciences</subject><subject>Metabolic Engineering</subject><subject>Metabolism</subject><subject>Microbial Genetics and Genomics</subject><subject>Microbiology</subject><subject>mitochondria</subject><subject>Petrochemicals</subject><subject>Petroleum</subject><subject>Petroleum engineering</subject><subject>Physiological aspects</subject><subject>Plasmids</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Shear stress</subject><subject>Studies</subject><subject>Succinates - metabolism</subject><subject>Yeast</subject><subject>Yeasts</subject><issn>0175-7598</issn><issn>1432-0614</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkktrFTEYhoMo9lj9AW50wI0upuYyuS1LsVqoCh67DpnMlzFlzuSYzIj9980w9XJElCwSwvO84QsvQk8JPiEYy9cZY8pZjUlTc6V5je-hDWkYrbEgzX20wUTyWnKtjtCjnK8xJlQJ8RAd0UZrSYjaoA_vYbJtHIKrYOzDCJDC2FfRV1vr3Beb4u7GQa4cJPgWcrBQ-ZiqMFkXxyJZF7pqn2I3uynE8TF64O2Q4cndfoyuzt98PntXX358e3F2elk7LuRUd9hjbRXuKGCpBVXgHbMUGHeeiM4TxYTFjDpQtBwb30mKvW2b1vGWdpYdo5drbnn66wx5MruQHQyDHSHO2RBBFOFcNer_KBe0YUUgBX3xB3od5zSWQRaqJGol-S-qtwOYMPo4JeuWUHPKFJdaKyILdfIXqqwOdqH8HfhQ7g-EVwdCYSb4PvV2ztlcbD8dsmRlXYo5J_Bmn8LOphtDsFmqYdZqmFINs1TD4OI8uxtubnfQ_TR-dKEAdAXyfukApN-m_0fq81XyNhrbp5DN1ZYWoJRNCawpuwVBSsnU</recordid><startdate>20141001</startdate><enddate>20141001</enddate><creator>Blazeck, John</creator><creator>Miller, Jarrett</creator><creator>Pan, Anny</creator><creator>Gengler, Jon</creator><creator>Holden, Clinton</creator><creator>Jamoussi, Mariam</creator><creator>Alper, Hal S</creator><general>Springer-Verlag</general><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7T7</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>LK8</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>7QO</scope></search><sort><creationdate>20141001</creationdate><title>Metabolic engineering of Saccharomyces cerevisiae for itaconic acid production</title><author>Blazeck, John ; Miller, Jarrett ; Pan, Anny ; Gengler, Jon ; Holden, Clinton ; Jamoussi, Mariam ; Alper, Hal S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c567t-d0f09a80d2e079628efc3a2e35cf16df1836a032ce828364fd720fab4bc5b2da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Acid production</topic><topic>Acids</topic><topic>Biomedical and Life Sciences</topic><topic>Biosynthetic Pathways</topic><topic>Biotechnological Products and Process Engineering</topic><topic>Biotechnology</topic><topic>Brewer's yeast</topic><topic>Cellular biology</topic><topic>cytosol</topic><topic>E coli</topic><topic>Enzymes</topic><topic>Fermentation</topic><topic>Genetic aspects</topic><topic>Genetic engineering</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Glucose</topic><topic>Life Sciences</topic><topic>Metabolic Engineering</topic><topic>Metabolism</topic><topic>Microbial Genetics and Genomics</topic><topic>Microbiology</topic><topic>mitochondria</topic><topic>Petrochemicals</topic><topic>Petroleum</topic><topic>Petroleum engineering</topic><topic>Physiological aspects</topic><topic>Plasmids</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Shear stress</topic><topic>Studies</topic><topic>Succinates - metabolism</topic><topic>Yeast</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Blazeck, John</creatorcontrib><creatorcontrib>Miller, Jarrett</creatorcontrib><creatorcontrib>Pan, Anny</creatorcontrib><creatorcontrib>Gengler, Jon</creatorcontrib><creatorcontrib>Holden, Clinton</creatorcontrib><creatorcontrib>Jamoussi, Mariam</creatorcontrib><creatorcontrib>Alper, Hal S</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><jtitle>Applied microbiology and biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Blazeck, John</au><au>Miller, Jarrett</au><au>Pan, Anny</au><au>Gengler, Jon</au><au>Holden, Clinton</au><au>Jamoussi, Mariam</au><au>Alper, Hal S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metabolic engineering of Saccharomyces cerevisiae for itaconic acid production</atitle><jtitle>Applied microbiology and biotechnology</jtitle><stitle>Appl Microbiol Biotechnol</stitle><addtitle>Appl Microbiol Biotechnol</addtitle><date>2014-10-01</date><risdate>2014</risdate><volume>98</volume><issue>19</issue><spage>8155</spage><epage>8164</epage><pages>8155-8164</pages><issn>0175-7598</issn><eissn>1432-0614</eissn><abstract>Renewable alternatives for petroleum-derived chemicals are achievable through biosynthetic production. Here, we utilize Saccharomyces cerevisiae to enable the synthesis of itaconic acid, a molecule with diverse applications as a petrochemical replacement. We first optimize pathway expression within S. cerevisiae through the use of a hybrid promoter. Next, we utilize sequential, in silico computational genome-scanning to identify beneficial genetic perturbations that are metabolically distant from the itaconic acid synthesis pathway. In this manner, we successfully identify three non-obvious genetic targets (∆ade3 ∆bna2 ∆tes1) that successively improve itaconic acid titer. We establish that focused manipulations of upstream pathway enzymes (localized refactoring) and enzyme re-localization to both mitochondria and cytosol fail to improve itaconic acid titers. Finally, we establish a higher cell density fermentation that ultimately achieves itaconic acid titer of 168 mg/L, a sevenfold improvement over initial conditions. This work represents an attempt to increase itaconic acid production in yeast and demonstrates the successful utilization of computationally guided genetic manipulation to increase metabolic capacity.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><pmid>24997118</pmid><doi>10.1007/s00253-014-5895-0</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0175-7598 |
ispartof | Applied microbiology and biotechnology, 2014-10, Vol.98 (19), p.8155-8164 |
issn | 0175-7598 1432-0614 |
language | eng |
recordid | cdi_proquest_miscellaneous_1618155848 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | Acid production Acids Biomedical and Life Sciences Biosynthetic Pathways Biotechnological Products and Process Engineering Biotechnology Brewer's yeast Cellular biology cytosol E coli Enzymes Fermentation Genetic aspects Genetic engineering Genomes Genomics Glucose Life Sciences Metabolic Engineering Metabolism Microbial Genetics and Genomics Microbiology mitochondria Petrochemicals Petroleum Petroleum engineering Physiological aspects Plasmids Saccharomyces cerevisiae Saccharomyces cerevisiae - genetics Saccharomyces cerevisiae - metabolism Saccharomyces cerevisiae Proteins - genetics Saccharomyces cerevisiae Proteins - metabolism Shear stress Studies Succinates - metabolism Yeast Yeasts |
title | Metabolic engineering of Saccharomyces cerevisiae for itaconic acid production |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T15%3A40%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metabolic%20engineering%20of%20Saccharomyces%20cerevisiae%20for%20itaconic%20acid%20production&rft.jtitle=Applied%20microbiology%20and%20biotechnology&rft.au=Blazeck,%20John&rft.date=2014-10-01&rft.volume=98&rft.issue=19&rft.spage=8155&rft.epage=8164&rft.pages=8155-8164&rft.issn=0175-7598&rft.eissn=1432-0614&rft_id=info:doi/10.1007/s00253-014-5895-0&rft_dat=%3Cgale_proqu%3EA385799817%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1561819875&rft_id=info:pmid/24997118&rft_galeid=A385799817&rfr_iscdi=true |