Evidence of a field-induced Berezinskii–Kosterlitz–Thouless scenario in a two-dimensional spin–dimer system

Two-dimensional (2D) systems with continuous symmetry lack conventional long-range order because of thermal fluctuations. Instead, as pointed out by Berezinskii, Kosterlitz and Thouless (BKT), 2D systems may exhibit so-called topological order driven by the binding of vortex–antivortex pairs. Signat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2014-10, Vol.5 (1), p.5169-5169
Hauptverfasser: Tutsch, U., Wolf, B., Wessel, S., Postulka, L., Tsui, Y., Jeschke, H.O., Opahle, I., Saha-Dasgupta, T., Valentí, R., Brühl, A., Remović-Langer, K., Kretz, T., Lerner, H.-W., Wagner, M., Lang, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5169
container_issue 1
container_start_page 5169
container_title Nature communications
container_volume 5
creator Tutsch, U.
Wolf, B.
Wessel, S.
Postulka, L.
Tsui, Y.
Jeschke, H.O.
Opahle, I.
Saha-Dasgupta, T.
Valentí, R.
Brühl, A.
Remović-Langer, K.
Kretz, T.
Lerner, H.-W.
Wagner, M.
Lang, M.
description Two-dimensional (2D) systems with continuous symmetry lack conventional long-range order because of thermal fluctuations. Instead, as pointed out by Berezinskii, Kosterlitz and Thouless (BKT), 2D systems may exhibit so-called topological order driven by the binding of vortex–antivortex pairs. Signatures of the BKT mechanism have been observed in thin films, specially designed heterostructures, layered magnets and trapped atomic gases. Here we report on an alternative approach for studying BKT physics by using a chemically constructed multilayer magnet. The novelty of this approach is to use molecular-based pairs of spin S =½ ions, which, by the application of a magnetic field, provide a gas of magnetic excitations. On the basis of measurements of the magnetic susceptibility and specific heat on a so-designed material, combined with density functional theory and quantum Monte Carlo calculations, we conclude that these excitations have a distinct 2D character, consistent with a BKT scenario, implying the emergence of vortices and antivortices. More than 40 years ago Berezinskii, Kosterlitz and Thouless (BKT) predicted a state of matter characterized by topological order driven by the binding of vortex-antivortex pairs. Here Tutsch et al. report experimental evidences of BKT physics in a two-dimensional spin-dimer system.
doi_str_mv 10.1038/ncomms6169
format Article
fullrecord <record><control><sourceid>proquest_C6C</sourceid><recordid>TN_cdi_proquest_miscellaneous_1618153478</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3472028841</sourcerecordid><originalsourceid>FETCH-LOGICAL-p205t-d37f538dbd6bbca02e7ccc19c6a91c6aa851e29b85af7d918bd0890a996966813</originalsourceid><addsrcrecordid>eNpdkc1KxDAQx4MguuhefAApeBGkmjRtmhxV1g9c8LKeS5pMNWub7CatsnvyHXxDn8T4hWIOE2bmN3_mA6E9go8JpvzEKtd1gREmNtAowzlJSZnRbTQOYY7jo4LwPN9C21lBc0YpH6Hl5MlosAoS1yQyaQy0OjVWDwp0cgYe1saGR2PeXl5vXOjBt6ZfR2f24IYWQkiCAiu9cYmxsb5_dqk2HdhgnJVtEhbGRvoj5JOwigLdLtpsZBtg_P3voLuLyez8Kp3eXl6fn07TRYaLPtW0bArKda1ZXSuJMyiVUkQoJgWJRvKCQCZqXsim1HGwWmMusBSCCcY4oTvo8Et34d1ygNBXnYnNtq204IZQEUY4iXsoeUQP_qFzN_jY_yfFclZwiiO1_00NdQe6WnjTSb-qfpYZgaMvIMSUvQf_RwZXHxeqfi9E3wH0tYhY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1616465830</pqid></control><display><type>article</type><title>Evidence of a field-induced Berezinskii–Kosterlitz–Thouless scenario in a two-dimensional spin–dimer system</title><source>Springer Nature OA Free Journals</source><creator>Tutsch, U. ; Wolf, B. ; Wessel, S. ; Postulka, L. ; Tsui, Y. ; Jeschke, H.O. ; Opahle, I. ; Saha-Dasgupta, T. ; Valentí, R. ; Brühl, A. ; Remović-Langer, K. ; Kretz, T. ; Lerner, H.-W. ; Wagner, M. ; Lang, M.</creator><creatorcontrib>Tutsch, U. ; Wolf, B. ; Wessel, S. ; Postulka, L. ; Tsui, Y. ; Jeschke, H.O. ; Opahle, I. ; Saha-Dasgupta, T. ; Valentí, R. ; Brühl, A. ; Remović-Langer, K. ; Kretz, T. ; Lerner, H.-W. ; Wagner, M. ; Lang, M.</creatorcontrib><description>Two-dimensional (2D) systems with continuous symmetry lack conventional long-range order because of thermal fluctuations. Instead, as pointed out by Berezinskii, Kosterlitz and Thouless (BKT), 2D systems may exhibit so-called topological order driven by the binding of vortex–antivortex pairs. Signatures of the BKT mechanism have been observed in thin films, specially designed heterostructures, layered magnets and trapped atomic gases. Here we report on an alternative approach for studying BKT physics by using a chemically constructed multilayer magnet. The novelty of this approach is to use molecular-based pairs of spin S =½ ions, which, by the application of a magnetic field, provide a gas of magnetic excitations. On the basis of measurements of the magnetic susceptibility and specific heat on a so-designed material, combined with density functional theory and quantum Monte Carlo calculations, we conclude that these excitations have a distinct 2D character, consistent with a BKT scenario, implying the emergence of vortices and antivortices. More than 40 years ago Berezinskii, Kosterlitz and Thouless (BKT) predicted a state of matter characterized by topological order driven by the binding of vortex-antivortex pairs. Here Tutsch et al. report experimental evidences of BKT physics in a two-dimensional spin-dimer system.</description><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/ncomms6169</identifier><identifier>PMID: 25346338</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/766/119 ; 639/766/483/640 ; Humanities and Social Sciences ; multidisciplinary ; Science</subject><ispartof>Nature communications, 2014-10, Vol.5 (1), p.5169-5169</ispartof><rights>Springer Nature Limited 2014</rights><rights>Copyright Nature Publishing Group Oct 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-p205t-d37f538dbd6bbca02e7ccc19c6a91c6aa851e29b85af7d918bd0890a996966813</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/ncomms6169$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://doi.org/10.1038/ncomms6169$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41120,42189,51576</link.rule.ids><linktorsrc>$$Uhttps://doi.org/10.1038/ncomms6169$$EView_record_in_Springer_Nature$$FView_record_in_$$GSpringer_Nature</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25346338$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tutsch, U.</creatorcontrib><creatorcontrib>Wolf, B.</creatorcontrib><creatorcontrib>Wessel, S.</creatorcontrib><creatorcontrib>Postulka, L.</creatorcontrib><creatorcontrib>Tsui, Y.</creatorcontrib><creatorcontrib>Jeschke, H.O.</creatorcontrib><creatorcontrib>Opahle, I.</creatorcontrib><creatorcontrib>Saha-Dasgupta, T.</creatorcontrib><creatorcontrib>Valentí, R.</creatorcontrib><creatorcontrib>Brühl, A.</creatorcontrib><creatorcontrib>Remović-Langer, K.</creatorcontrib><creatorcontrib>Kretz, T.</creatorcontrib><creatorcontrib>Lerner, H.-W.</creatorcontrib><creatorcontrib>Wagner, M.</creatorcontrib><creatorcontrib>Lang, M.</creatorcontrib><title>Evidence of a field-induced Berezinskii–Kosterlitz–Thouless scenario in a two-dimensional spin–dimer system</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>Two-dimensional (2D) systems with continuous symmetry lack conventional long-range order because of thermal fluctuations. Instead, as pointed out by Berezinskii, Kosterlitz and Thouless (BKT), 2D systems may exhibit so-called topological order driven by the binding of vortex–antivortex pairs. Signatures of the BKT mechanism have been observed in thin films, specially designed heterostructures, layered magnets and trapped atomic gases. Here we report on an alternative approach for studying BKT physics by using a chemically constructed multilayer magnet. The novelty of this approach is to use molecular-based pairs of spin S =½ ions, which, by the application of a magnetic field, provide a gas of magnetic excitations. On the basis of measurements of the magnetic susceptibility and specific heat on a so-designed material, combined with density functional theory and quantum Monte Carlo calculations, we conclude that these excitations have a distinct 2D character, consistent with a BKT scenario, implying the emergence of vortices and antivortices. More than 40 years ago Berezinskii, Kosterlitz and Thouless (BKT) predicted a state of matter characterized by topological order driven by the binding of vortex-antivortex pairs. Here Tutsch et al. report experimental evidences of BKT physics in a two-dimensional spin-dimer system.</description><subject>639/766/119</subject><subject>639/766/483/640</subject><subject>Humanities and Social Sciences</subject><subject>multidisciplinary</subject><subject>Science</subject><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpdkc1KxDAQx4MguuhefAApeBGkmjRtmhxV1g9c8LKeS5pMNWub7CatsnvyHXxDn8T4hWIOE2bmN3_mA6E9go8JpvzEKtd1gREmNtAowzlJSZnRbTQOYY7jo4LwPN9C21lBc0YpH6Hl5MlosAoS1yQyaQy0OjVWDwp0cgYe1saGR2PeXl5vXOjBt6ZfR2f24IYWQkiCAiu9cYmxsb5_dqk2HdhgnJVtEhbGRvoj5JOwigLdLtpsZBtg_P3voLuLyez8Kp3eXl6fn07TRYaLPtW0bArKda1ZXSuJMyiVUkQoJgWJRvKCQCZqXsim1HGwWmMusBSCCcY4oTvo8Et34d1ygNBXnYnNtq204IZQEUY4iXsoeUQP_qFzN_jY_yfFclZwiiO1_00NdQe6WnjTSb-qfpYZgaMvIMSUvQf_RwZXHxeqfi9E3wH0tYhY</recordid><startdate>20141027</startdate><enddate>20141027</enddate><creator>Tutsch, U.</creator><creator>Wolf, B.</creator><creator>Wessel, S.</creator><creator>Postulka, L.</creator><creator>Tsui, Y.</creator><creator>Jeschke, H.O.</creator><creator>Opahle, I.</creator><creator>Saha-Dasgupta, T.</creator><creator>Valentí, R.</creator><creator>Brühl, A.</creator><creator>Remović-Langer, K.</creator><creator>Kretz, T.</creator><creator>Lerner, H.-W.</creator><creator>Wagner, M.</creator><creator>Lang, M.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope></search><sort><creationdate>20141027</creationdate><title>Evidence of a field-induced Berezinskii–Kosterlitz–Thouless scenario in a two-dimensional spin–dimer system</title><author>Tutsch, U. ; Wolf, B. ; Wessel, S. ; Postulka, L. ; Tsui, Y. ; Jeschke, H.O. ; Opahle, I. ; Saha-Dasgupta, T. ; Valentí, R. ; Brühl, A. ; Remović-Langer, K. ; Kretz, T. ; Lerner, H.-W. ; Wagner, M. ; Lang, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p205t-d37f538dbd6bbca02e7ccc19c6a91c6aa851e29b85af7d918bd0890a996966813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>639/766/119</topic><topic>639/766/483/640</topic><topic>Humanities and Social Sciences</topic><topic>multidisciplinary</topic><topic>Science</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tutsch, U.</creatorcontrib><creatorcontrib>Wolf, B.</creatorcontrib><creatorcontrib>Wessel, S.</creatorcontrib><creatorcontrib>Postulka, L.</creatorcontrib><creatorcontrib>Tsui, Y.</creatorcontrib><creatorcontrib>Jeschke, H.O.</creatorcontrib><creatorcontrib>Opahle, I.</creatorcontrib><creatorcontrib>Saha-Dasgupta, T.</creatorcontrib><creatorcontrib>Valentí, R.</creatorcontrib><creatorcontrib>Brühl, A.</creatorcontrib><creatorcontrib>Remović-Langer, K.</creatorcontrib><creatorcontrib>Kretz, T.</creatorcontrib><creatorcontrib>Lerner, H.-W.</creatorcontrib><creatorcontrib>Wagner, M.</creatorcontrib><creatorcontrib>Lang, M.</creatorcontrib><collection>PubMed</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tutsch, U.</au><au>Wolf, B.</au><au>Wessel, S.</au><au>Postulka, L.</au><au>Tsui, Y.</au><au>Jeschke, H.O.</au><au>Opahle, I.</au><au>Saha-Dasgupta, T.</au><au>Valentí, R.</au><au>Brühl, A.</au><au>Remović-Langer, K.</au><au>Kretz, T.</au><au>Lerner, H.-W.</au><au>Wagner, M.</au><au>Lang, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evidence of a field-induced Berezinskii–Kosterlitz–Thouless scenario in a two-dimensional spin–dimer system</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2014-10-27</date><risdate>2014</risdate><volume>5</volume><issue>1</issue><spage>5169</spage><epage>5169</epage><pages>5169-5169</pages><eissn>2041-1723</eissn><abstract>Two-dimensional (2D) systems with continuous symmetry lack conventional long-range order because of thermal fluctuations. Instead, as pointed out by Berezinskii, Kosterlitz and Thouless (BKT), 2D systems may exhibit so-called topological order driven by the binding of vortex–antivortex pairs. Signatures of the BKT mechanism have been observed in thin films, specially designed heterostructures, layered magnets and trapped atomic gases. Here we report on an alternative approach for studying BKT physics by using a chemically constructed multilayer magnet. The novelty of this approach is to use molecular-based pairs of spin S =½ ions, which, by the application of a magnetic field, provide a gas of magnetic excitations. On the basis of measurements of the magnetic susceptibility and specific heat on a so-designed material, combined with density functional theory and quantum Monte Carlo calculations, we conclude that these excitations have a distinct 2D character, consistent with a BKT scenario, implying the emergence of vortices and antivortices. More than 40 years ago Berezinskii, Kosterlitz and Thouless (BKT) predicted a state of matter characterized by topological order driven by the binding of vortex-antivortex pairs. Here Tutsch et al. report experimental evidences of BKT physics in a two-dimensional spin-dimer system.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>25346338</pmid><doi>10.1038/ncomms6169</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2041-1723
ispartof Nature communications, 2014-10, Vol.5 (1), p.5169-5169
issn 2041-1723
language eng
recordid cdi_proquest_miscellaneous_1618153478
source Springer Nature OA Free Journals
subjects 639/766/119
639/766/483/640
Humanities and Social Sciences
multidisciplinary
Science
title Evidence of a field-induced Berezinskii–Kosterlitz–Thouless scenario in a two-dimensional spin–dimer system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T18%3A30%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_C6C&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evidence%20of%20a%20field-induced%20Berezinskii%E2%80%93Kosterlitz%E2%80%93Thouless%20scenario%20in%20a%20two-dimensional%20spin%E2%80%93dimer%20system&rft.jtitle=Nature%20communications&rft.au=Tutsch,%20U.&rft.date=2014-10-27&rft.volume=5&rft.issue=1&rft.spage=5169&rft.epage=5169&rft.pages=5169-5169&rft.eissn=2041-1723&rft_id=info:doi/10.1038/ncomms6169&rft_dat=%3Cproquest_C6C%3E3472028841%3C/proquest_C6C%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1616465830&rft_id=info:pmid/25346338&rfr_iscdi=true