Empirical model for variation of the continuum emission in the upper atmosphere. 2. Infrared components

The absolute integral intensity of the IR components of the continuum emission is calculated from the laboratory velocities of photochemical reactions between NO and nonexcited and excited O 3 molecules. The vertical intensity distribution of the continuous radiation spectrum of the upper atmosphere...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geomagnetism and Aeronomy 2014-09, Vol.54 (5), p.655-665
Hauptverfasser: Semenov, A. I., Shefov, N. N., Medvedeva, I. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 665
container_issue 5
container_start_page 655
container_title Geomagnetism and Aeronomy
container_volume 54
creator Semenov, A. I.
Shefov, N. N.
Medvedeva, I. V.
description The absolute integral intensity of the IR components of the continuum emission is calculated from the laboratory velocities of photochemical reactions between NO and nonexcited and excited O 3 molecules. The vertical intensity distribution of the continuous radiation spectrum of the upper atmosphere (continuum) in the IR area spans a range of heights of the middle atmosphere from 10 to 15 km. A comparison of the calculated values of the continuum intensity with the results of its spectrophotometric surface measurements in the near-IR spectrum allowed refinement of the coefficient of velocity of the NO-ozone reaction responsible for origination of the continuum emission in the IR spectrum range.
doi_str_mv 10.1134/S0016793214050168
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1618150752</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3437834311</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-cbccad7ce54af4afffd28187cd18e733e3847eedf92650e838841f5c8ca9c563</originalsourceid><addsrcrecordid>eNp1kEFLxDAQhYMouK7-AG8BL166ZpqmTY-yrLogeHAP3kpMJ7td2qQmreC_N3U9iCIMzMD73uMxhFwCWwDw7OaZMciLkqeQMRFPeURmIIRI8ky8HJPZJCeTfkrOQtgzxpkQMCPbVdc3vtGqpZ2rsaXGefqufKOGxlnqDB12SLWzQ2PHsaPYNSFMSmO_lLHv0VM1dC70O_S4oOmCrq3xymMdfV3vLNohnJMTo9qAF997TjZ3q83yIXl8ul8vbx8TzbNySPSr1qouNIpMmTjG1KkEWegaJBacI5dZgVibMs0FQ8mlzMAILbUqtcj5nFwfYnvv3kYMQxX7amxbZdGNoYIcJAhWiDSiV7_QvRu9jeUqiEkS0jLjkYIDpb0LwaOpet90yn9UwKrp89Wfz0dPevCEyNot-h_J_5o-AbqWhiU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1563812943</pqid></control><display><type>article</type><title>Empirical model for variation of the continuum emission in the upper atmosphere. 2. Infrared components</title><source>SpringerLink Journals</source><creator>Semenov, A. I. ; Shefov, N. N. ; Medvedeva, I. V.</creator><creatorcontrib>Semenov, A. I. ; Shefov, N. N. ; Medvedeva, I. V.</creatorcontrib><description>The absolute integral intensity of the IR components of the continuum emission is calculated from the laboratory velocities of photochemical reactions between NO and nonexcited and excited O 3 molecules. The vertical intensity distribution of the continuous radiation spectrum of the upper atmosphere (continuum) in the IR area spans a range of heights of the middle atmosphere from 10 to 15 km. A comparison of the calculated values of the continuum intensity with the results of its spectrophotometric surface measurements in the near-IR spectrum allowed refinement of the coefficient of velocity of the NO-ozone reaction responsible for origination of the continuum emission in the IR spectrum range.</description><identifier>ISSN: 0016-7932</identifier><identifier>EISSN: 1555-645X</identifier><identifier>EISSN: 0016-7940</identifier><identifier>DOI: 10.1134/S0016793214050168</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Atmosphere ; Earth and Environmental Science ; Earth Sciences ; Emissions ; Geophysics/Geodesy ; Infrared radiation ; Photochemical reactions ; Photochemicals ; Upper atmosphere</subject><ispartof>Geomagnetism and Aeronomy, 2014-09, Vol.54 (5), p.655-665</ispartof><rights>Pleiades Publishing, Ltd. 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-cbccad7ce54af4afffd28187cd18e733e3847eedf92650e838841f5c8ca9c563</citedby><cites>FETCH-LOGICAL-c349t-cbccad7ce54af4afffd28187cd18e733e3847eedf92650e838841f5c8ca9c563</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0016793214050168$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0016793214050168$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Semenov, A. I.</creatorcontrib><creatorcontrib>Shefov, N. N.</creatorcontrib><creatorcontrib>Medvedeva, I. V.</creatorcontrib><title>Empirical model for variation of the continuum emission in the upper atmosphere. 2. Infrared components</title><title>Geomagnetism and Aeronomy</title><addtitle>Geomagn. Aeron</addtitle><description>The absolute integral intensity of the IR components of the continuum emission is calculated from the laboratory velocities of photochemical reactions between NO and nonexcited and excited O 3 molecules. The vertical intensity distribution of the continuous radiation spectrum of the upper atmosphere (continuum) in the IR area spans a range of heights of the middle atmosphere from 10 to 15 km. A comparison of the calculated values of the continuum intensity with the results of its spectrophotometric surface measurements in the near-IR spectrum allowed refinement of the coefficient of velocity of the NO-ozone reaction responsible for origination of the continuum emission in the IR spectrum range.</description><subject>Atmosphere</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Emissions</subject><subject>Geophysics/Geodesy</subject><subject>Infrared radiation</subject><subject>Photochemical reactions</subject><subject>Photochemicals</subject><subject>Upper atmosphere</subject><issn>0016-7932</issn><issn>1555-645X</issn><issn>0016-7940</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kEFLxDAQhYMouK7-AG8BL166ZpqmTY-yrLogeHAP3kpMJ7td2qQmreC_N3U9iCIMzMD73uMxhFwCWwDw7OaZMciLkqeQMRFPeURmIIRI8ky8HJPZJCeTfkrOQtgzxpkQMCPbVdc3vtGqpZ2rsaXGefqufKOGxlnqDB12SLWzQ2PHsaPYNSFMSmO_lLHv0VM1dC70O_S4oOmCrq3xymMdfV3vLNohnJMTo9qAF997TjZ3q83yIXl8ul8vbx8TzbNySPSr1qouNIpMmTjG1KkEWegaJBacI5dZgVibMs0FQ8mlzMAILbUqtcj5nFwfYnvv3kYMQxX7amxbZdGNoYIcJAhWiDSiV7_QvRu9jeUqiEkS0jLjkYIDpb0LwaOpet90yn9UwKrp89Wfz0dPevCEyNot-h_J_5o-AbqWhiU</recordid><startdate>20140901</startdate><enddate>20140901</enddate><creator>Semenov, A. I.</creator><creator>Shefov, N. N.</creator><creator>Medvedeva, I. V.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7TV</scope><scope>C1K</scope></search><sort><creationdate>20140901</creationdate><title>Empirical model for variation of the continuum emission in the upper atmosphere. 2. Infrared components</title><author>Semenov, A. I. ; Shefov, N. N. ; Medvedeva, I. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-cbccad7ce54af4afffd28187cd18e733e3847eedf92650e838841f5c8ca9c563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Atmosphere</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Emissions</topic><topic>Geophysics/Geodesy</topic><topic>Infrared radiation</topic><topic>Photochemical reactions</topic><topic>Photochemicals</topic><topic>Upper atmosphere</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Semenov, A. I.</creatorcontrib><creatorcontrib>Shefov, N. N.</creatorcontrib><creatorcontrib>Medvedeva, I. V.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Pollution Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Geomagnetism and Aeronomy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Semenov, A. I.</au><au>Shefov, N. N.</au><au>Medvedeva, I. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Empirical model for variation of the continuum emission in the upper atmosphere. 2. Infrared components</atitle><jtitle>Geomagnetism and Aeronomy</jtitle><stitle>Geomagn. Aeron</stitle><date>2014-09-01</date><risdate>2014</risdate><volume>54</volume><issue>5</issue><spage>655</spage><epage>665</epage><pages>655-665</pages><issn>0016-7932</issn><eissn>1555-645X</eissn><eissn>0016-7940</eissn><abstract>The absolute integral intensity of the IR components of the continuum emission is calculated from the laboratory velocities of photochemical reactions between NO and nonexcited and excited O 3 molecules. The vertical intensity distribution of the continuous radiation spectrum of the upper atmosphere (continuum) in the IR area spans a range of heights of the middle atmosphere from 10 to 15 km. A comparison of the calculated values of the continuum intensity with the results of its spectrophotometric surface measurements in the near-IR spectrum allowed refinement of the coefficient of velocity of the NO-ozone reaction responsible for origination of the continuum emission in the IR spectrum range.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0016793214050168</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0016-7932
ispartof Geomagnetism and Aeronomy, 2014-09, Vol.54 (5), p.655-665
issn 0016-7932
1555-645X
0016-7940
language eng
recordid cdi_proquest_miscellaneous_1618150752
source SpringerLink Journals
subjects Atmosphere
Earth and Environmental Science
Earth Sciences
Emissions
Geophysics/Geodesy
Infrared radiation
Photochemical reactions
Photochemicals
Upper atmosphere
title Empirical model for variation of the continuum emission in the upper atmosphere. 2. Infrared components
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T01%3A09%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Empirical%20model%20for%20variation%20of%20the%20continuum%20emission%20in%20the%20upper%20atmosphere.%202.%20Infrared%20components&rft.jtitle=Geomagnetism%20and%20Aeronomy&rft.au=Semenov,%20A.%20I.&rft.date=2014-09-01&rft.volume=54&rft.issue=5&rft.spage=655&rft.epage=665&rft.pages=655-665&rft.issn=0016-7932&rft.eissn=1555-645X&rft_id=info:doi/10.1134/S0016793214050168&rft_dat=%3Cproquest_cross%3E3437834311%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1563812943&rft_id=info:pmid/&rfr_iscdi=true