Empirical model for variation of the continuum emission in the upper atmosphere. 2. Infrared components
The absolute integral intensity of the IR components of the continuum emission is calculated from the laboratory velocities of photochemical reactions between NO and nonexcited and excited O 3 molecules. The vertical intensity distribution of the continuous radiation spectrum of the upper atmosphere...
Gespeichert in:
Veröffentlicht in: | Geomagnetism and Aeronomy 2014-09, Vol.54 (5), p.655-665 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 665 |
---|---|
container_issue | 5 |
container_start_page | 655 |
container_title | Geomagnetism and Aeronomy |
container_volume | 54 |
creator | Semenov, A. I. Shefov, N. N. Medvedeva, I. V. |
description | The absolute integral intensity of the IR components of the continuum emission is calculated from the laboratory velocities of photochemical reactions between NO and nonexcited and excited O
3
molecules. The vertical intensity distribution of the continuous radiation spectrum of the upper atmosphere (continuum) in the IR area spans a range of heights of the middle atmosphere from 10 to 15 km. A comparison of the calculated values of the continuum intensity with the results of its spectrophotometric surface measurements in the near-IR spectrum allowed refinement of the coefficient of velocity of the NO-ozone reaction responsible for origination of the continuum emission in the IR spectrum range. |
doi_str_mv | 10.1134/S0016793214050168 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1618150752</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3437834311</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-cbccad7ce54af4afffd28187cd18e733e3847eedf92650e838841f5c8ca9c563</originalsourceid><addsrcrecordid>eNp1kEFLxDAQhYMouK7-AG8BL166ZpqmTY-yrLogeHAP3kpMJ7td2qQmreC_N3U9iCIMzMD73uMxhFwCWwDw7OaZMciLkqeQMRFPeURmIIRI8ky8HJPZJCeTfkrOQtgzxpkQMCPbVdc3vtGqpZ2rsaXGefqufKOGxlnqDB12SLWzQ2PHsaPYNSFMSmO_lLHv0VM1dC70O_S4oOmCrq3xymMdfV3vLNohnJMTo9qAF997TjZ3q83yIXl8ul8vbx8TzbNySPSr1qouNIpMmTjG1KkEWegaJBacI5dZgVibMs0FQ8mlzMAILbUqtcj5nFwfYnvv3kYMQxX7amxbZdGNoYIcJAhWiDSiV7_QvRu9jeUqiEkS0jLjkYIDpb0LwaOpet90yn9UwKrp89Wfz0dPevCEyNot-h_J_5o-AbqWhiU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1563812943</pqid></control><display><type>article</type><title>Empirical model for variation of the continuum emission in the upper atmosphere. 2. Infrared components</title><source>SpringerLink Journals</source><creator>Semenov, A. I. ; Shefov, N. N. ; Medvedeva, I. V.</creator><creatorcontrib>Semenov, A. I. ; Shefov, N. N. ; Medvedeva, I. V.</creatorcontrib><description>The absolute integral intensity of the IR components of the continuum emission is calculated from the laboratory velocities of photochemical reactions between NO and nonexcited and excited O
3
molecules. The vertical intensity distribution of the continuous radiation spectrum of the upper atmosphere (continuum) in the IR area spans a range of heights of the middle atmosphere from 10 to 15 km. A comparison of the calculated values of the continuum intensity with the results of its spectrophotometric surface measurements in the near-IR spectrum allowed refinement of the coefficient of velocity of the NO-ozone reaction responsible for origination of the continuum emission in the IR spectrum range.</description><identifier>ISSN: 0016-7932</identifier><identifier>EISSN: 1555-645X</identifier><identifier>EISSN: 0016-7940</identifier><identifier>DOI: 10.1134/S0016793214050168</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Atmosphere ; Earth and Environmental Science ; Earth Sciences ; Emissions ; Geophysics/Geodesy ; Infrared radiation ; Photochemical reactions ; Photochemicals ; Upper atmosphere</subject><ispartof>Geomagnetism and Aeronomy, 2014-09, Vol.54 (5), p.655-665</ispartof><rights>Pleiades Publishing, Ltd. 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-cbccad7ce54af4afffd28187cd18e733e3847eedf92650e838841f5c8ca9c563</citedby><cites>FETCH-LOGICAL-c349t-cbccad7ce54af4afffd28187cd18e733e3847eedf92650e838841f5c8ca9c563</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0016793214050168$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0016793214050168$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Semenov, A. I.</creatorcontrib><creatorcontrib>Shefov, N. N.</creatorcontrib><creatorcontrib>Medvedeva, I. V.</creatorcontrib><title>Empirical model for variation of the continuum emission in the upper atmosphere. 2. Infrared components</title><title>Geomagnetism and Aeronomy</title><addtitle>Geomagn. Aeron</addtitle><description>The absolute integral intensity of the IR components of the continuum emission is calculated from the laboratory velocities of photochemical reactions between NO and nonexcited and excited O
3
molecules. The vertical intensity distribution of the continuous radiation spectrum of the upper atmosphere (continuum) in the IR area spans a range of heights of the middle atmosphere from 10 to 15 km. A comparison of the calculated values of the continuum intensity with the results of its spectrophotometric surface measurements in the near-IR spectrum allowed refinement of the coefficient of velocity of the NO-ozone reaction responsible for origination of the continuum emission in the IR spectrum range.</description><subject>Atmosphere</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Emissions</subject><subject>Geophysics/Geodesy</subject><subject>Infrared radiation</subject><subject>Photochemical reactions</subject><subject>Photochemicals</subject><subject>Upper atmosphere</subject><issn>0016-7932</issn><issn>1555-645X</issn><issn>0016-7940</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kEFLxDAQhYMouK7-AG8BL166ZpqmTY-yrLogeHAP3kpMJ7td2qQmreC_N3U9iCIMzMD73uMxhFwCWwDw7OaZMciLkqeQMRFPeURmIIRI8ky8HJPZJCeTfkrOQtgzxpkQMCPbVdc3vtGqpZ2rsaXGefqufKOGxlnqDB12SLWzQ2PHsaPYNSFMSmO_lLHv0VM1dC70O_S4oOmCrq3xymMdfV3vLNohnJMTo9qAF997TjZ3q83yIXl8ul8vbx8TzbNySPSr1qouNIpMmTjG1KkEWegaJBacI5dZgVibMs0FQ8mlzMAILbUqtcj5nFwfYnvv3kYMQxX7amxbZdGNoYIcJAhWiDSiV7_QvRu9jeUqiEkS0jLjkYIDpb0LwaOpet90yn9UwKrp89Wfz0dPevCEyNot-h_J_5o-AbqWhiU</recordid><startdate>20140901</startdate><enddate>20140901</enddate><creator>Semenov, A. I.</creator><creator>Shefov, N. N.</creator><creator>Medvedeva, I. V.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7TV</scope><scope>C1K</scope></search><sort><creationdate>20140901</creationdate><title>Empirical model for variation of the continuum emission in the upper atmosphere. 2. Infrared components</title><author>Semenov, A. I. ; Shefov, N. N. ; Medvedeva, I. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-cbccad7ce54af4afffd28187cd18e733e3847eedf92650e838841f5c8ca9c563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Atmosphere</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Emissions</topic><topic>Geophysics/Geodesy</topic><topic>Infrared radiation</topic><topic>Photochemical reactions</topic><topic>Photochemicals</topic><topic>Upper atmosphere</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Semenov, A. I.</creatorcontrib><creatorcontrib>Shefov, N. N.</creatorcontrib><creatorcontrib>Medvedeva, I. V.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Pollution Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Geomagnetism and Aeronomy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Semenov, A. I.</au><au>Shefov, N. N.</au><au>Medvedeva, I. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Empirical model for variation of the continuum emission in the upper atmosphere. 2. Infrared components</atitle><jtitle>Geomagnetism and Aeronomy</jtitle><stitle>Geomagn. Aeron</stitle><date>2014-09-01</date><risdate>2014</risdate><volume>54</volume><issue>5</issue><spage>655</spage><epage>665</epage><pages>655-665</pages><issn>0016-7932</issn><eissn>1555-645X</eissn><eissn>0016-7940</eissn><abstract>The absolute integral intensity of the IR components of the continuum emission is calculated from the laboratory velocities of photochemical reactions between NO and nonexcited and excited O
3
molecules. The vertical intensity distribution of the continuous radiation spectrum of the upper atmosphere (continuum) in the IR area spans a range of heights of the middle atmosphere from 10 to 15 km. A comparison of the calculated values of the continuum intensity with the results of its spectrophotometric surface measurements in the near-IR spectrum allowed refinement of the coefficient of velocity of the NO-ozone reaction responsible for origination of the continuum emission in the IR spectrum range.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0016793214050168</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0016-7932 |
ispartof | Geomagnetism and Aeronomy, 2014-09, Vol.54 (5), p.655-665 |
issn | 0016-7932 1555-645X 0016-7940 |
language | eng |
recordid | cdi_proquest_miscellaneous_1618150752 |
source | SpringerLink Journals |
subjects | Atmosphere Earth and Environmental Science Earth Sciences Emissions Geophysics/Geodesy Infrared radiation Photochemical reactions Photochemicals Upper atmosphere |
title | Empirical model for variation of the continuum emission in the upper atmosphere. 2. Infrared components |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T01%3A09%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Empirical%20model%20for%20variation%20of%20the%20continuum%20emission%20in%20the%20upper%20atmosphere.%202.%20Infrared%20components&rft.jtitle=Geomagnetism%20and%20Aeronomy&rft.au=Semenov,%20A.%20I.&rft.date=2014-09-01&rft.volume=54&rft.issue=5&rft.spage=655&rft.epage=665&rft.pages=655-665&rft.issn=0016-7932&rft.eissn=1555-645X&rft_id=info:doi/10.1134/S0016793214050168&rft_dat=%3Cproquest_cross%3E3437834311%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1563812943&rft_id=info:pmid/&rfr_iscdi=true |