Applying the Nernst Equation To Simulate Redox Potential Variations for Biological Nitrification and Denitrification Processes

In this paper, various forms of Nernst equations have been developed based on the real stoichiometric relationship of biological nitrification and denitrification reactions. Instead of using the Nernst equation based on a one-to-one stoichiometric relation for the oxidizing and the reducing species,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science & technology 2004-03, Vol.38 (6), p.1807-1812
Hauptverfasser: Chang, Cheng-Nan, Cheng, Hong-Bang, Chao, Allen C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1812
container_issue 6
container_start_page 1807
container_title Environmental science & technology
container_volume 38
creator Chang, Cheng-Nan
Cheng, Hong-Bang
Chao, Allen C
description In this paper, various forms of Nernst equations have been developed based on the real stoichiometric relationship of biological nitrification and denitrification reactions. Instead of using the Nernst equation based on a one-to-one stoichiometric relation for the oxidizing and the reducing species, the basic Nernst equation is modified into slightly different forms. Each is suitable for simulating the redox potential (ORP) variation of a specific biological nitrification or denitrification process. Using the data published in the literature, the validity of these developed Nernst equations has been verified by close fits of the measured ORP data with the calculated ORP curve. The simulation results also indicate that if the biological process is simulated using an incorrect form of Nernst equation, the calculated ORP curve will not fit the measured data. Using these Nernst equations, the ORP value that corresponds to a predetermined degree of completion for the biochemical reaction can be calculated. Thus, these Nernst equations will enable a more efficient on-line control of the biological process.
doi_str_mv 10.1021/es021088e
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_16178137</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>661261471</sourcerecordid><originalsourceid>FETCH-LOGICAL-a503t-8b9c70f8bf3eeb4551840b904f0758fee3038e6ad4d0cd3ea8c43a52b9cf1a923</originalsourceid><addsrcrecordid>eNpl0c1u1DAQAGALUdGlcOAFkIUEEoeUcRwnzrEtBSq1ZbW7VIiL5STj4jYbb21Hai88O2531eXnYluez6PxDCGvGOwzyNkHDGkFKfEJmTCRQyakYE_JBIDxrObl913yPIQrAMg5yGdklwmoirLmE_LrYLXq7-xwSeNPpOfohxDp8c2oo3UDXTg6t8ux1xHpDDt3S6cu4hCt7umF9vZBBWqcp4fW9e7StilybqO3Jh0fcuihox9x-Otu6l2LIWB4QXaM7gO-3Ox75Nun48XRl-z06-eTo4PTTAvgMZNN3VZgZGM4YlMIwWQBTQ2FgUpIg8iBSyx1V3TQdhy1bAuuRZ6eGabrnO-Rd-u8K-9uRgxRLW1ose_1gG4MipWskoxXCb75B1650Q-pNpV6xwpWFffo_Rq13oXg0aiVt0vt7xQDdT8R9TiRZF9vEo7NErut3IwggbcboEPqnvF6aG34w5WyqGtILls7GyLePsa1v1ZlxSuhFtO5mp1ND-ez8kL92ObVbdh-4v8CfwO9wbBk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>230141747</pqid></control><display><type>article</type><title>Applying the Nernst Equation To Simulate Redox Potential Variations for Biological Nitrification and Denitrification Processes</title><source>ACS Publications</source><source>MEDLINE</source><creator>Chang, Cheng-Nan ; Cheng, Hong-Bang ; Chao, Allen C</creator><creatorcontrib>Chang, Cheng-Nan ; Cheng, Hong-Bang ; Chao, Allen C</creatorcontrib><description>In this paper, various forms of Nernst equations have been developed based on the real stoichiometric relationship of biological nitrification and denitrification reactions. Instead of using the Nernst equation based on a one-to-one stoichiometric relation for the oxidizing and the reducing species, the basic Nernst equation is modified into slightly different forms. Each is suitable for simulating the redox potential (ORP) variation of a specific biological nitrification or denitrification process. Using the data published in the literature, the validity of these developed Nernst equations has been verified by close fits of the measured ORP data with the calculated ORP curve. The simulation results also indicate that if the biological process is simulated using an incorrect form of Nernst equation, the calculated ORP curve will not fit the measured data. Using these Nernst equations, the ORP value that corresponds to a predetermined degree of completion for the biochemical reaction can be calculated. Thus, these Nernst equations will enable a more efficient on-line control of the biological process.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/es021088e</identifier><identifier>PMID: 15074693</identifier><identifier>CODEN: ESTHAG</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Applied sciences ; Biological and medical sciences ; Biological treatment of waters ; Biology ; Bioreactors ; Biotechnology ; Denitrification ; Environment and pollution ; Exact sciences and technology ; Fundamental and applied biological sciences. Psychology ; General purification processes ; Industrial applications and implications. Economical aspects ; Models, Theoretical ; Molecular Conformation ; Nitrification ; Nitrogen - metabolism ; Oxidation ; Oxidation-Reduction ; Pollution ; Sewage - chemistry ; Simulation ; Wastewaters ; Water treatment and pollution</subject><ispartof>Environmental science &amp; technology, 2004-03, Vol.38 (6), p.1807-1812</ispartof><rights>Copyright © 2004 American Chemical Society</rights><rights>2004 INIST-CNRS</rights><rights>Copyright American Chemical Society Mar 15, 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a503t-8b9c70f8bf3eeb4551840b904f0758fee3038e6ad4d0cd3ea8c43a52b9cf1a923</citedby><cites>FETCH-LOGICAL-a503t-8b9c70f8bf3eeb4551840b904f0758fee3038e6ad4d0cd3ea8c43a52b9cf1a923</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/es021088e$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/es021088e$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15684990$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15074693$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chang, Cheng-Nan</creatorcontrib><creatorcontrib>Cheng, Hong-Bang</creatorcontrib><creatorcontrib>Chao, Allen C</creatorcontrib><title>Applying the Nernst Equation To Simulate Redox Potential Variations for Biological Nitrification and Denitrification Processes</title><title>Environmental science &amp; technology</title><addtitle>Environ. Sci. Technol</addtitle><description>In this paper, various forms of Nernst equations have been developed based on the real stoichiometric relationship of biological nitrification and denitrification reactions. Instead of using the Nernst equation based on a one-to-one stoichiometric relation for the oxidizing and the reducing species, the basic Nernst equation is modified into slightly different forms. Each is suitable for simulating the redox potential (ORP) variation of a specific biological nitrification or denitrification process. Using the data published in the literature, the validity of these developed Nernst equations has been verified by close fits of the measured ORP data with the calculated ORP curve. The simulation results also indicate that if the biological process is simulated using an incorrect form of Nernst equation, the calculated ORP curve will not fit the measured data. Using these Nernst equations, the ORP value that corresponds to a predetermined degree of completion for the biochemical reaction can be calculated. Thus, these Nernst equations will enable a more efficient on-line control of the biological process.</description><subject>Applied sciences</subject><subject>Biological and medical sciences</subject><subject>Biological treatment of waters</subject><subject>Biology</subject><subject>Bioreactors</subject><subject>Biotechnology</subject><subject>Denitrification</subject><subject>Environment and pollution</subject><subject>Exact sciences and technology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General purification processes</subject><subject>Industrial applications and implications. Economical aspects</subject><subject>Models, Theoretical</subject><subject>Molecular Conformation</subject><subject>Nitrification</subject><subject>Nitrogen - metabolism</subject><subject>Oxidation</subject><subject>Oxidation-Reduction</subject><subject>Pollution</subject><subject>Sewage - chemistry</subject><subject>Simulation</subject><subject>Wastewaters</subject><subject>Water treatment and pollution</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpl0c1u1DAQAGALUdGlcOAFkIUEEoeUcRwnzrEtBSq1ZbW7VIiL5STj4jYbb21Hai88O2531eXnYluez6PxDCGvGOwzyNkHDGkFKfEJmTCRQyakYE_JBIDxrObl913yPIQrAMg5yGdklwmoirLmE_LrYLXq7-xwSeNPpOfohxDp8c2oo3UDXTg6t8ux1xHpDDt3S6cu4hCt7umF9vZBBWqcp4fW9e7StilybqO3Jh0fcuihox9x-Otu6l2LIWB4QXaM7gO-3Ox75Nun48XRl-z06-eTo4PTTAvgMZNN3VZgZGM4YlMIwWQBTQ2FgUpIg8iBSyx1V3TQdhy1bAuuRZ6eGabrnO-Rd-u8K-9uRgxRLW1ose_1gG4MipWskoxXCb75B1650Q-pNpV6xwpWFffo_Rq13oXg0aiVt0vt7xQDdT8R9TiRZF9vEo7NErut3IwggbcboEPqnvF6aG34w5WyqGtILls7GyLePsa1v1ZlxSuhFtO5mp1ND-ez8kL92ObVbdh-4v8CfwO9wbBk</recordid><startdate>20040315</startdate><enddate>20040315</enddate><creator>Chang, Cheng-Nan</creator><creator>Cheng, Hong-Bang</creator><creator>Chao, Allen C</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><scope>7QH</scope><scope>7UA</scope></search><sort><creationdate>20040315</creationdate><title>Applying the Nernst Equation To Simulate Redox Potential Variations for Biological Nitrification and Denitrification Processes</title><author>Chang, Cheng-Nan ; Cheng, Hong-Bang ; Chao, Allen C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a503t-8b9c70f8bf3eeb4551840b904f0758fee3038e6ad4d0cd3ea8c43a52b9cf1a923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Applied sciences</topic><topic>Biological and medical sciences</topic><topic>Biological treatment of waters</topic><topic>Biology</topic><topic>Bioreactors</topic><topic>Biotechnology</topic><topic>Denitrification</topic><topic>Environment and pollution</topic><topic>Exact sciences and technology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General purification processes</topic><topic>Industrial applications and implications. Economical aspects</topic><topic>Models, Theoretical</topic><topic>Molecular Conformation</topic><topic>Nitrification</topic><topic>Nitrogen - metabolism</topic><topic>Oxidation</topic><topic>Oxidation-Reduction</topic><topic>Pollution</topic><topic>Sewage - chemistry</topic><topic>Simulation</topic><topic>Wastewaters</topic><topic>Water treatment and pollution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chang, Cheng-Nan</creatorcontrib><creatorcontrib>Cheng, Hong-Bang</creatorcontrib><creatorcontrib>Chao, Allen C</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><jtitle>Environmental science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chang, Cheng-Nan</au><au>Cheng, Hong-Bang</au><au>Chao, Allen C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Applying the Nernst Equation To Simulate Redox Potential Variations for Biological Nitrification and Denitrification Processes</atitle><jtitle>Environmental science &amp; technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2004-03-15</date><risdate>2004</risdate><volume>38</volume><issue>6</issue><spage>1807</spage><epage>1812</epage><pages>1807-1812</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><coden>ESTHAG</coden><abstract>In this paper, various forms of Nernst equations have been developed based on the real stoichiometric relationship of biological nitrification and denitrification reactions. Instead of using the Nernst equation based on a one-to-one stoichiometric relation for the oxidizing and the reducing species, the basic Nernst equation is modified into slightly different forms. Each is suitable for simulating the redox potential (ORP) variation of a specific biological nitrification or denitrification process. Using the data published in the literature, the validity of these developed Nernst equations has been verified by close fits of the measured ORP data with the calculated ORP curve. The simulation results also indicate that if the biological process is simulated using an incorrect form of Nernst equation, the calculated ORP curve will not fit the measured data. Using these Nernst equations, the ORP value that corresponds to a predetermined degree of completion for the biochemical reaction can be calculated. Thus, these Nernst equations will enable a more efficient on-line control of the biological process.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>15074693</pmid><doi>10.1021/es021088e</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0013-936X
ispartof Environmental science & technology, 2004-03, Vol.38 (6), p.1807-1812
issn 0013-936X
1520-5851
language eng
recordid cdi_proquest_miscellaneous_16178137
source ACS Publications; MEDLINE
subjects Applied sciences
Biological and medical sciences
Biological treatment of waters
Biology
Bioreactors
Biotechnology
Denitrification
Environment and pollution
Exact sciences and technology
Fundamental and applied biological sciences. Psychology
General purification processes
Industrial applications and implications. Economical aspects
Models, Theoretical
Molecular Conformation
Nitrification
Nitrogen - metabolism
Oxidation
Oxidation-Reduction
Pollution
Sewage - chemistry
Simulation
Wastewaters
Water treatment and pollution
title Applying the Nernst Equation To Simulate Redox Potential Variations for Biological Nitrification and Denitrification Processes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T11%3A05%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Applying%20the%20Nernst%20Equation%20To%20Simulate%20Redox%20Potential%20Variations%20for%20Biological%20Nitrification%20and%20Denitrification%20Processes&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Chang,%20Cheng-Nan&rft.date=2004-03-15&rft.volume=38&rft.issue=6&rft.spage=1807&rft.epage=1812&rft.pages=1807-1812&rft.issn=0013-936X&rft.eissn=1520-5851&rft.coden=ESTHAG&rft_id=info:doi/10.1021/es021088e&rft_dat=%3Cproquest_cross%3E661261471%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=230141747&rft_id=info:pmid/15074693&rfr_iscdi=true