Applying the Nernst Equation To Simulate Redox Potential Variations for Biological Nitrification and Denitrification Processes
In this paper, various forms of Nernst equations have been developed based on the real stoichiometric relationship of biological nitrification and denitrification reactions. Instead of using the Nernst equation based on a one-to-one stoichiometric relation for the oxidizing and the reducing species,...
Gespeichert in:
Veröffentlicht in: | Environmental science & technology 2004-03, Vol.38 (6), p.1807-1812 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1812 |
---|---|
container_issue | 6 |
container_start_page | 1807 |
container_title | Environmental science & technology |
container_volume | 38 |
creator | Chang, Cheng-Nan Cheng, Hong-Bang Chao, Allen C |
description | In this paper, various forms of Nernst equations have been developed based on the real stoichiometric relationship of biological nitrification and denitrification reactions. Instead of using the Nernst equation based on a one-to-one stoichiometric relation for the oxidizing and the reducing species, the basic Nernst equation is modified into slightly different forms. Each is suitable for simulating the redox potential (ORP) variation of a specific biological nitrification or denitrification process. Using the data published in the literature, the validity of these developed Nernst equations has been verified by close fits of the measured ORP data with the calculated ORP curve. The simulation results also indicate that if the biological process is simulated using an incorrect form of Nernst equation, the calculated ORP curve will not fit the measured data. Using these Nernst equations, the ORP value that corresponds to a predetermined degree of completion for the biochemical reaction can be calculated. Thus, these Nernst equations will enable a more efficient on-line control of the biological process. |
doi_str_mv | 10.1021/es021088e |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_16178137</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>661261471</sourcerecordid><originalsourceid>FETCH-LOGICAL-a503t-8b9c70f8bf3eeb4551840b904f0758fee3038e6ad4d0cd3ea8c43a52b9cf1a923</originalsourceid><addsrcrecordid>eNpl0c1u1DAQAGALUdGlcOAFkIUEEoeUcRwnzrEtBSq1ZbW7VIiL5STj4jYbb21Hai88O2531eXnYluez6PxDCGvGOwzyNkHDGkFKfEJmTCRQyakYE_JBIDxrObl913yPIQrAMg5yGdklwmoirLmE_LrYLXq7-xwSeNPpOfohxDp8c2oo3UDXTg6t8ux1xHpDDt3S6cu4hCt7umF9vZBBWqcp4fW9e7StilybqO3Jh0fcuihox9x-Otu6l2LIWB4QXaM7gO-3Ox75Nun48XRl-z06-eTo4PTTAvgMZNN3VZgZGM4YlMIwWQBTQ2FgUpIg8iBSyx1V3TQdhy1bAuuRZ6eGabrnO-Rd-u8K-9uRgxRLW1ose_1gG4MipWskoxXCb75B1650Q-pNpV6xwpWFffo_Rq13oXg0aiVt0vt7xQDdT8R9TiRZF9vEo7NErut3IwggbcboEPqnvF6aG34w5WyqGtILls7GyLePsa1v1ZlxSuhFtO5mp1ND-ez8kL92ObVbdh-4v8CfwO9wbBk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>230141747</pqid></control><display><type>article</type><title>Applying the Nernst Equation To Simulate Redox Potential Variations for Biological Nitrification and Denitrification Processes</title><source>ACS Publications</source><source>MEDLINE</source><creator>Chang, Cheng-Nan ; Cheng, Hong-Bang ; Chao, Allen C</creator><creatorcontrib>Chang, Cheng-Nan ; Cheng, Hong-Bang ; Chao, Allen C</creatorcontrib><description>In this paper, various forms of Nernst equations have been developed based on the real stoichiometric relationship of biological nitrification and denitrification reactions. Instead of using the Nernst equation based on a one-to-one stoichiometric relation for the oxidizing and the reducing species, the basic Nernst equation is modified into slightly different forms. Each is suitable for simulating the redox potential (ORP) variation of a specific biological nitrification or denitrification process. Using the data published in the literature, the validity of these developed Nernst equations has been verified by close fits of the measured ORP data with the calculated ORP curve. The simulation results also indicate that if the biological process is simulated using an incorrect form of Nernst equation, the calculated ORP curve will not fit the measured data. Using these Nernst equations, the ORP value that corresponds to a predetermined degree of completion for the biochemical reaction can be calculated. Thus, these Nernst equations will enable a more efficient on-line control of the biological process.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/es021088e</identifier><identifier>PMID: 15074693</identifier><identifier>CODEN: ESTHAG</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Applied sciences ; Biological and medical sciences ; Biological treatment of waters ; Biology ; Bioreactors ; Biotechnology ; Denitrification ; Environment and pollution ; Exact sciences and technology ; Fundamental and applied biological sciences. Psychology ; General purification processes ; Industrial applications and implications. Economical aspects ; Models, Theoretical ; Molecular Conformation ; Nitrification ; Nitrogen - metabolism ; Oxidation ; Oxidation-Reduction ; Pollution ; Sewage - chemistry ; Simulation ; Wastewaters ; Water treatment and pollution</subject><ispartof>Environmental science & technology, 2004-03, Vol.38 (6), p.1807-1812</ispartof><rights>Copyright © 2004 American Chemical Society</rights><rights>2004 INIST-CNRS</rights><rights>Copyright American Chemical Society Mar 15, 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a503t-8b9c70f8bf3eeb4551840b904f0758fee3038e6ad4d0cd3ea8c43a52b9cf1a923</citedby><cites>FETCH-LOGICAL-a503t-8b9c70f8bf3eeb4551840b904f0758fee3038e6ad4d0cd3ea8c43a52b9cf1a923</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/es021088e$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/es021088e$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15684990$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15074693$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chang, Cheng-Nan</creatorcontrib><creatorcontrib>Cheng, Hong-Bang</creatorcontrib><creatorcontrib>Chao, Allen C</creatorcontrib><title>Applying the Nernst Equation To Simulate Redox Potential Variations for Biological Nitrification and Denitrification Processes</title><title>Environmental science & technology</title><addtitle>Environ. Sci. Technol</addtitle><description>In this paper, various forms of Nernst equations have been developed based on the real stoichiometric relationship of biological nitrification and denitrification reactions. Instead of using the Nernst equation based on a one-to-one stoichiometric relation for the oxidizing and the reducing species, the basic Nernst equation is modified into slightly different forms. Each is suitable for simulating the redox potential (ORP) variation of a specific biological nitrification or denitrification process. Using the data published in the literature, the validity of these developed Nernst equations has been verified by close fits of the measured ORP data with the calculated ORP curve. The simulation results also indicate that if the biological process is simulated using an incorrect form of Nernst equation, the calculated ORP curve will not fit the measured data. Using these Nernst equations, the ORP value that corresponds to a predetermined degree of completion for the biochemical reaction can be calculated. Thus, these Nernst equations will enable a more efficient on-line control of the biological process.</description><subject>Applied sciences</subject><subject>Biological and medical sciences</subject><subject>Biological treatment of waters</subject><subject>Biology</subject><subject>Bioreactors</subject><subject>Biotechnology</subject><subject>Denitrification</subject><subject>Environment and pollution</subject><subject>Exact sciences and technology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General purification processes</subject><subject>Industrial applications and implications. Economical aspects</subject><subject>Models, Theoretical</subject><subject>Molecular Conformation</subject><subject>Nitrification</subject><subject>Nitrogen - metabolism</subject><subject>Oxidation</subject><subject>Oxidation-Reduction</subject><subject>Pollution</subject><subject>Sewage - chemistry</subject><subject>Simulation</subject><subject>Wastewaters</subject><subject>Water treatment and pollution</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpl0c1u1DAQAGALUdGlcOAFkIUEEoeUcRwnzrEtBSq1ZbW7VIiL5STj4jYbb21Hai88O2531eXnYluez6PxDCGvGOwzyNkHDGkFKfEJmTCRQyakYE_JBIDxrObl913yPIQrAMg5yGdklwmoirLmE_LrYLXq7-xwSeNPpOfohxDp8c2oo3UDXTg6t8ux1xHpDDt3S6cu4hCt7umF9vZBBWqcp4fW9e7StilybqO3Jh0fcuihox9x-Otu6l2LIWB4QXaM7gO-3Ox75Nun48XRl-z06-eTo4PTTAvgMZNN3VZgZGM4YlMIwWQBTQ2FgUpIg8iBSyx1V3TQdhy1bAuuRZ6eGabrnO-Rd-u8K-9uRgxRLW1ose_1gG4MipWskoxXCb75B1650Q-pNpV6xwpWFffo_Rq13oXg0aiVt0vt7xQDdT8R9TiRZF9vEo7NErut3IwggbcboEPqnvF6aG34w5WyqGtILls7GyLePsa1v1ZlxSuhFtO5mp1ND-ez8kL92ObVbdh-4v8CfwO9wbBk</recordid><startdate>20040315</startdate><enddate>20040315</enddate><creator>Chang, Cheng-Nan</creator><creator>Cheng, Hong-Bang</creator><creator>Chao, Allen C</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><scope>7QH</scope><scope>7UA</scope></search><sort><creationdate>20040315</creationdate><title>Applying the Nernst Equation To Simulate Redox Potential Variations for Biological Nitrification and Denitrification Processes</title><author>Chang, Cheng-Nan ; Cheng, Hong-Bang ; Chao, Allen C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a503t-8b9c70f8bf3eeb4551840b904f0758fee3038e6ad4d0cd3ea8c43a52b9cf1a923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Applied sciences</topic><topic>Biological and medical sciences</topic><topic>Biological treatment of waters</topic><topic>Biology</topic><topic>Bioreactors</topic><topic>Biotechnology</topic><topic>Denitrification</topic><topic>Environment and pollution</topic><topic>Exact sciences and technology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General purification processes</topic><topic>Industrial applications and implications. Economical aspects</topic><topic>Models, Theoretical</topic><topic>Molecular Conformation</topic><topic>Nitrification</topic><topic>Nitrogen - metabolism</topic><topic>Oxidation</topic><topic>Oxidation-Reduction</topic><topic>Pollution</topic><topic>Sewage - chemistry</topic><topic>Simulation</topic><topic>Wastewaters</topic><topic>Water treatment and pollution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chang, Cheng-Nan</creatorcontrib><creatorcontrib>Cheng, Hong-Bang</creatorcontrib><creatorcontrib>Chao, Allen C</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><jtitle>Environmental science & technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chang, Cheng-Nan</au><au>Cheng, Hong-Bang</au><au>Chao, Allen C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Applying the Nernst Equation To Simulate Redox Potential Variations for Biological Nitrification and Denitrification Processes</atitle><jtitle>Environmental science & technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2004-03-15</date><risdate>2004</risdate><volume>38</volume><issue>6</issue><spage>1807</spage><epage>1812</epage><pages>1807-1812</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><coden>ESTHAG</coden><abstract>In this paper, various forms of Nernst equations have been developed based on the real stoichiometric relationship of biological nitrification and denitrification reactions. Instead of using the Nernst equation based on a one-to-one stoichiometric relation for the oxidizing and the reducing species, the basic Nernst equation is modified into slightly different forms. Each is suitable for simulating the redox potential (ORP) variation of a specific biological nitrification or denitrification process. Using the data published in the literature, the validity of these developed Nernst equations has been verified by close fits of the measured ORP data with the calculated ORP curve. The simulation results also indicate that if the biological process is simulated using an incorrect form of Nernst equation, the calculated ORP curve will not fit the measured data. Using these Nernst equations, the ORP value that corresponds to a predetermined degree of completion for the biochemical reaction can be calculated. Thus, these Nernst equations will enable a more efficient on-line control of the biological process.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>15074693</pmid><doi>10.1021/es021088e</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-936X |
ispartof | Environmental science & technology, 2004-03, Vol.38 (6), p.1807-1812 |
issn | 0013-936X 1520-5851 |
language | eng |
recordid | cdi_proquest_miscellaneous_16178137 |
source | ACS Publications; MEDLINE |
subjects | Applied sciences Biological and medical sciences Biological treatment of waters Biology Bioreactors Biotechnology Denitrification Environment and pollution Exact sciences and technology Fundamental and applied biological sciences. Psychology General purification processes Industrial applications and implications. Economical aspects Models, Theoretical Molecular Conformation Nitrification Nitrogen - metabolism Oxidation Oxidation-Reduction Pollution Sewage - chemistry Simulation Wastewaters Water treatment and pollution |
title | Applying the Nernst Equation To Simulate Redox Potential Variations for Biological Nitrification and Denitrification Processes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T11%3A05%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Applying%20the%20Nernst%20Equation%20To%20Simulate%20Redox%20Potential%20Variations%20for%20Biological%20Nitrification%20and%20Denitrification%20Processes&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Chang,%20Cheng-Nan&rft.date=2004-03-15&rft.volume=38&rft.issue=6&rft.spage=1807&rft.epage=1812&rft.pages=1807-1812&rft.issn=0013-936X&rft.eissn=1520-5851&rft.coden=ESTHAG&rft_id=info:doi/10.1021/es021088e&rft_dat=%3Cproquest_cross%3E661261471%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=230141747&rft_id=info:pmid/15074693&rfr_iscdi=true |