Reactivity of Fe(II)-Bearing Minerals toward Reductive Transformation of Organic Contaminants

Fe(II) present at surfaces of iron-containing minerals can play a significant role in the overall attenuation of reducible contaminants in the subsurface. As the chemical environment, i.e., the type and arrangement of ligands, strongly affects the redox potential of Fe(II), the presence of various m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science & technology 2004-02, Vol.38 (3), p.799-807
Hauptverfasser: Elsner, Martin, Schwarzenbach, René P., Haderlein, Stefan B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 807
container_issue 3
container_start_page 799
container_title Environmental science & technology
container_volume 38
creator Elsner, Martin
Schwarzenbach, René P.
Haderlein, Stefan B.
description Fe(II) present at surfaces of iron-containing minerals can play a significant role in the overall attenuation of reducible contaminants in the subsurface. As the chemical environment, i.e., the type and arrangement of ligands, strongly affects the redox potential of Fe(II), the presence of various mineral sorbents is expected to modulate the reactivity of surficial Fe(II)-species in aqueous systems. In a comparative study we evaluated the reactivity of ferrous iron in aqueous suspensions of siderite (FeCO3), nontronite (ferruginous smectite SWa-1), hematite (α-Fe2O3), lepidocrocite (γ-FeOOH), goethite (α-FeOOH), magnetite (Fe3O4), sulfate green rust (FeII 4FeIII 2(OH)12SO4·4H2O), pyrite (FeS2), and mackinawite (FeS) under similar conditions (pH 7.2, 25 m2 mineral/L, 1 mM Fe(II)aq, O2 (aq) < 0.1 g/L). Surface-area-normalized pseudo first-order rate constants are reported for the reduction of hexachloroethane and 4-chloronitrobenzene representing two classes of environmentally relevant transformation reactions of pollutants, i.e., dehalogenation and nitroaryl reduction. The reactivities of the different Fe(II) mineral systems varied greatly and systematically both within and between the two data sets obtained with the two probe compounds. As a general trend, surface-area-normalized reaction rates increased in the order Fe(II) + siderite < Fe(II) + iron oxides < Fe(II) + iron sulfides. 4-Chloronitrobenzene was transformed by mineral-bound Fe(II) much more rapidly than hexachloroethane, except for suspensions of hematite, pyrite, and nontronite. The results demonstrate that abiotic reactions with surface-bound Fe(II) may affect or even dominate the long-term behavior of reducible pollutants in the subsurface, particularly in the presence of Fe(III) bearing minerals. As such reactions can be dominated by specific interactions of the oxidant with the surface, care must be taken in extrapolating reactivity data of surface-bound Fe(II) between different compound classes.
doi_str_mv 10.1021/es0345569
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_16174483</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>621472221</sourcerecordid><originalsourceid>FETCH-LOGICAL-a503t-93a2fdbb0f788047cd288e2a4fcb3490c428a9734372e0ec278128b3e93e21323</originalsourceid><addsrcrecordid>eNpl0F1rFDEYBeAgit1WL_wDMgiKvRjN50zmsi6tLqxU1lVEkPBO5p2SupPUZEbtvzfLLl3Rq1zkyeHkEPKE0VeMcvYaExVSqaq5R2ZMcVoqrdh9MqOUibIR1ZcjcpzSNaWUC6ofkiMmm0rrqp6RbysEO7qfbrwtQl9c4MvF4rR8gxCdvyreO48RNqkYwy-IXbHCbtpqLNYRfOpDHGB0wW-fXsYr8M4W8-BHGJwHP6ZH5EGfn-Pj_XlCPl2cr-fvyuXl28X8bFmComLMFYH3XdvSvtaaytp2XGvkIHvbCtlQK7mGphZS1BwpWl5rxnUrsBHImeDihLzY5d7E8GPCNJrBJYubDXgMUzKsYrWUWmT47B94HaboczeTp2GCNZXK6HSHbAwpRezNTXQDxFvDqNkObu4Gz_bpPnBqB-wOcr9wBs_3AJKFTZ93sy4dnJKCKbFtVu6cSyP-vruH-N3klFqZ9YeP5rOWy9VXwc1fuWDT4RP_F_wD6--hPg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>230131965</pqid></control><display><type>article</type><title>Reactivity of Fe(II)-Bearing Minerals toward Reductive Transformation of Organic Contaminants</title><source>ACS Publications</source><source>MEDLINE</source><creator>Elsner, Martin ; Schwarzenbach, René P. ; Haderlein, Stefan B.</creator><creatorcontrib>Elsner, Martin ; Schwarzenbach, René P. ; Haderlein, Stefan B.</creatorcontrib><description>Fe(II) present at surfaces of iron-containing minerals can play a significant role in the overall attenuation of reducible contaminants in the subsurface. As the chemical environment, i.e., the type and arrangement of ligands, strongly affects the redox potential of Fe(II), the presence of various mineral sorbents is expected to modulate the reactivity of surficial Fe(II)-species in aqueous systems. In a comparative study we evaluated the reactivity of ferrous iron in aqueous suspensions of siderite (FeCO3), nontronite (ferruginous smectite SWa-1), hematite (α-Fe2O3), lepidocrocite (γ-FeOOH), goethite (α-FeOOH), magnetite (Fe3O4), sulfate green rust (FeII 4FeIII 2(OH)12SO4·4H2O), pyrite (FeS2), and mackinawite (FeS) under similar conditions (pH 7.2, 25 m2 mineral/L, 1 mM Fe(II)aq, O2 (aq) &lt; 0.1 g/L). Surface-area-normalized pseudo first-order rate constants are reported for the reduction of hexachloroethane and 4-chloronitrobenzene representing two classes of environmentally relevant transformation reactions of pollutants, i.e., dehalogenation and nitroaryl reduction. The reactivities of the different Fe(II) mineral systems varied greatly and systematically both within and between the two data sets obtained with the two probe compounds. As a general trend, surface-area-normalized reaction rates increased in the order Fe(II) + siderite &lt; Fe(II) + iron oxides &lt; Fe(II) + iron sulfides. 4-Chloronitrobenzene was transformed by mineral-bound Fe(II) much more rapidly than hexachloroethane, except for suspensions of hematite, pyrite, and nontronite. The results demonstrate that abiotic reactions with surface-bound Fe(II) may affect or even dominate the long-term behavior of reducible pollutants in the subsurface, particularly in the presence of Fe(III) bearing minerals. As such reactions can be dominated by specific interactions of the oxidant with the surface, care must be taken in extrapolating reactivity data of surface-bound Fe(II) between different compound classes.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/es0345569</identifier><identifier>PMID: 14968867</identifier><identifier>CODEN: ESTHAG</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Applied sciences ; Biological and physicochemical properties of pollutants. Interaction in the soil ; Earth sciences ; Earth, ocean, space ; Engineering and environment geology. Geothermics ; Exact sciences and technology ; Ferrous Compounds - analysis ; Ferrous Compounds - chemistry ; Groundwaters ; Iron ; Iron - analysis ; Iron - chemistry ; Iron Compounds - analysis ; Iron Compounds - chemistry ; Ligands ; Minerals ; Natural water pollution ; Organic Chemicals ; Organic contaminants ; Pollutants ; Pollution ; Pollution, environment geology ; Soil and sediments pollution ; Soil contamination ; Soil Pollutants - analysis ; Studies ; Water treatment and pollution</subject><ispartof>Environmental science &amp; technology, 2004-02, Vol.38 (3), p.799-807</ispartof><rights>Copyright © 2004 American Chemical Society</rights><rights>2004 INIST-CNRS</rights><rights>Copyright American Chemical Society Feb 1, 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a503t-93a2fdbb0f788047cd288e2a4fcb3490c428a9734372e0ec278128b3e93e21323</citedby><cites>FETCH-LOGICAL-a503t-93a2fdbb0f788047cd288e2a4fcb3490c428a9734372e0ec278128b3e93e21323</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/es0345569$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/es0345569$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15431533$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/14968867$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Elsner, Martin</creatorcontrib><creatorcontrib>Schwarzenbach, René P.</creatorcontrib><creatorcontrib>Haderlein, Stefan B.</creatorcontrib><title>Reactivity of Fe(II)-Bearing Minerals toward Reductive Transformation of Organic Contaminants</title><title>Environmental science &amp; technology</title><addtitle>Environ. Sci. Technol</addtitle><description>Fe(II) present at surfaces of iron-containing minerals can play a significant role in the overall attenuation of reducible contaminants in the subsurface. As the chemical environment, i.e., the type and arrangement of ligands, strongly affects the redox potential of Fe(II), the presence of various mineral sorbents is expected to modulate the reactivity of surficial Fe(II)-species in aqueous systems. In a comparative study we evaluated the reactivity of ferrous iron in aqueous suspensions of siderite (FeCO3), nontronite (ferruginous smectite SWa-1), hematite (α-Fe2O3), lepidocrocite (γ-FeOOH), goethite (α-FeOOH), magnetite (Fe3O4), sulfate green rust (FeII 4FeIII 2(OH)12SO4·4H2O), pyrite (FeS2), and mackinawite (FeS) under similar conditions (pH 7.2, 25 m2 mineral/L, 1 mM Fe(II)aq, O2 (aq) &lt; 0.1 g/L). Surface-area-normalized pseudo first-order rate constants are reported for the reduction of hexachloroethane and 4-chloronitrobenzene representing two classes of environmentally relevant transformation reactions of pollutants, i.e., dehalogenation and nitroaryl reduction. The reactivities of the different Fe(II) mineral systems varied greatly and systematically both within and between the two data sets obtained with the two probe compounds. As a general trend, surface-area-normalized reaction rates increased in the order Fe(II) + siderite &lt; Fe(II) + iron oxides &lt; Fe(II) + iron sulfides. 4-Chloronitrobenzene was transformed by mineral-bound Fe(II) much more rapidly than hexachloroethane, except for suspensions of hematite, pyrite, and nontronite. The results demonstrate that abiotic reactions with surface-bound Fe(II) may affect or even dominate the long-term behavior of reducible pollutants in the subsurface, particularly in the presence of Fe(III) bearing minerals. As such reactions can be dominated by specific interactions of the oxidant with the surface, care must be taken in extrapolating reactivity data of surface-bound Fe(II) between different compound classes.</description><subject>Applied sciences</subject><subject>Biological and physicochemical properties of pollutants. Interaction in the soil</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Engineering and environment geology. Geothermics</subject><subject>Exact sciences and technology</subject><subject>Ferrous Compounds - analysis</subject><subject>Ferrous Compounds - chemistry</subject><subject>Groundwaters</subject><subject>Iron</subject><subject>Iron - analysis</subject><subject>Iron - chemistry</subject><subject>Iron Compounds - analysis</subject><subject>Iron Compounds - chemistry</subject><subject>Ligands</subject><subject>Minerals</subject><subject>Natural water pollution</subject><subject>Organic Chemicals</subject><subject>Organic contaminants</subject><subject>Pollutants</subject><subject>Pollution</subject><subject>Pollution, environment geology</subject><subject>Soil and sediments pollution</subject><subject>Soil contamination</subject><subject>Soil Pollutants - analysis</subject><subject>Studies</subject><subject>Water treatment and pollution</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpl0F1rFDEYBeAgit1WL_wDMgiKvRjN50zmsi6tLqxU1lVEkPBO5p2SupPUZEbtvzfLLl3Rq1zkyeHkEPKE0VeMcvYaExVSqaq5R2ZMcVoqrdh9MqOUibIR1ZcjcpzSNaWUC6ofkiMmm0rrqp6RbysEO7qfbrwtQl9c4MvF4rR8gxCdvyreO48RNqkYwy-IXbHCbtpqLNYRfOpDHGB0wW-fXsYr8M4W8-BHGJwHP6ZH5EGfn-Pj_XlCPl2cr-fvyuXl28X8bFmComLMFYH3XdvSvtaaytp2XGvkIHvbCtlQK7mGphZS1BwpWl5rxnUrsBHImeDihLzY5d7E8GPCNJrBJYubDXgMUzKsYrWUWmT47B94HaboczeTp2GCNZXK6HSHbAwpRezNTXQDxFvDqNkObu4Gz_bpPnBqB-wOcr9wBs_3AJKFTZ93sy4dnJKCKbFtVu6cSyP-vruH-N3klFqZ9YeP5rOWy9VXwc1fuWDT4RP_F_wD6--hPg</recordid><startdate>20040201</startdate><enddate>20040201</enddate><creator>Elsner, Martin</creator><creator>Schwarzenbach, René P.</creator><creator>Haderlein, Stefan B.</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><scope>7TV</scope></search><sort><creationdate>20040201</creationdate><title>Reactivity of Fe(II)-Bearing Minerals toward Reductive Transformation of Organic Contaminants</title><author>Elsner, Martin ; Schwarzenbach, René P. ; Haderlein, Stefan B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a503t-93a2fdbb0f788047cd288e2a4fcb3490c428a9734372e0ec278128b3e93e21323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Applied sciences</topic><topic>Biological and physicochemical properties of pollutants. Interaction in the soil</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Engineering and environment geology. Geothermics</topic><topic>Exact sciences and technology</topic><topic>Ferrous Compounds - analysis</topic><topic>Ferrous Compounds - chemistry</topic><topic>Groundwaters</topic><topic>Iron</topic><topic>Iron - analysis</topic><topic>Iron - chemistry</topic><topic>Iron Compounds - analysis</topic><topic>Iron Compounds - chemistry</topic><topic>Ligands</topic><topic>Minerals</topic><topic>Natural water pollution</topic><topic>Organic Chemicals</topic><topic>Organic contaminants</topic><topic>Pollutants</topic><topic>Pollution</topic><topic>Pollution, environment geology</topic><topic>Soil and sediments pollution</topic><topic>Soil contamination</topic><topic>Soil Pollutants - analysis</topic><topic>Studies</topic><topic>Water treatment and pollution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Elsner, Martin</creatorcontrib><creatorcontrib>Schwarzenbach, René P.</creatorcontrib><creatorcontrib>Haderlein, Stefan B.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>Pollution Abstracts</collection><jtitle>Environmental science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Elsner, Martin</au><au>Schwarzenbach, René P.</au><au>Haderlein, Stefan B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reactivity of Fe(II)-Bearing Minerals toward Reductive Transformation of Organic Contaminants</atitle><jtitle>Environmental science &amp; technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2004-02-01</date><risdate>2004</risdate><volume>38</volume><issue>3</issue><spage>799</spage><epage>807</epage><pages>799-807</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><coden>ESTHAG</coden><abstract>Fe(II) present at surfaces of iron-containing minerals can play a significant role in the overall attenuation of reducible contaminants in the subsurface. As the chemical environment, i.e., the type and arrangement of ligands, strongly affects the redox potential of Fe(II), the presence of various mineral sorbents is expected to modulate the reactivity of surficial Fe(II)-species in aqueous systems. In a comparative study we evaluated the reactivity of ferrous iron in aqueous suspensions of siderite (FeCO3), nontronite (ferruginous smectite SWa-1), hematite (α-Fe2O3), lepidocrocite (γ-FeOOH), goethite (α-FeOOH), magnetite (Fe3O4), sulfate green rust (FeII 4FeIII 2(OH)12SO4·4H2O), pyrite (FeS2), and mackinawite (FeS) under similar conditions (pH 7.2, 25 m2 mineral/L, 1 mM Fe(II)aq, O2 (aq) &lt; 0.1 g/L). Surface-area-normalized pseudo first-order rate constants are reported for the reduction of hexachloroethane and 4-chloronitrobenzene representing two classes of environmentally relevant transformation reactions of pollutants, i.e., dehalogenation and nitroaryl reduction. The reactivities of the different Fe(II) mineral systems varied greatly and systematically both within and between the two data sets obtained with the two probe compounds. As a general trend, surface-area-normalized reaction rates increased in the order Fe(II) + siderite &lt; Fe(II) + iron oxides &lt; Fe(II) + iron sulfides. 4-Chloronitrobenzene was transformed by mineral-bound Fe(II) much more rapidly than hexachloroethane, except for suspensions of hematite, pyrite, and nontronite. The results demonstrate that abiotic reactions with surface-bound Fe(II) may affect or even dominate the long-term behavior of reducible pollutants in the subsurface, particularly in the presence of Fe(III) bearing minerals. As such reactions can be dominated by specific interactions of the oxidant with the surface, care must be taken in extrapolating reactivity data of surface-bound Fe(II) between different compound classes.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>14968867</pmid><doi>10.1021/es0345569</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0013-936X
ispartof Environmental science & technology, 2004-02, Vol.38 (3), p.799-807
issn 0013-936X
1520-5851
language eng
recordid cdi_proquest_miscellaneous_16174483
source ACS Publications; MEDLINE
subjects Applied sciences
Biological and physicochemical properties of pollutants. Interaction in the soil
Earth sciences
Earth, ocean, space
Engineering and environment geology. Geothermics
Exact sciences and technology
Ferrous Compounds - analysis
Ferrous Compounds - chemistry
Groundwaters
Iron
Iron - analysis
Iron - chemistry
Iron Compounds - analysis
Iron Compounds - chemistry
Ligands
Minerals
Natural water pollution
Organic Chemicals
Organic contaminants
Pollutants
Pollution
Pollution, environment geology
Soil and sediments pollution
Soil contamination
Soil Pollutants - analysis
Studies
Water treatment and pollution
title Reactivity of Fe(II)-Bearing Minerals toward Reductive Transformation of Organic Contaminants
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T15%3A40%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reactivity%20of%20Fe(II)-Bearing%20Minerals%20toward%20Reductive%20Transformation%20of%20Organic%20Contaminants&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Elsner,%20Martin&rft.date=2004-02-01&rft.volume=38&rft.issue=3&rft.spage=799&rft.epage=807&rft.pages=799-807&rft.issn=0013-936X&rft.eissn=1520-5851&rft.coden=ESTHAG&rft_id=info:doi/10.1021/es0345569&rft_dat=%3Cproquest_cross%3E621472221%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=230131965&rft_id=info:pmid/14968867&rfr_iscdi=true