Tannery effluent as a carbon source for biological sulphate reduction
Tannery effluent was assessed as a carbon source for biological sulphate reduction in a pilot-scale upflow anaerobic sludge blanket (UASB), stirred tank reactor (STR) and trench reactor (TR). Sulphate removals of between 60–80% were obtained in all three reactors at total sulphate feed levels of up...
Gespeichert in:
Veröffentlicht in: | Water research (Oxford) 2004-06, Vol.38 (11), p.2651-2658 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2658 |
---|---|
container_issue | 11 |
container_start_page | 2651 |
container_title | Water research (Oxford) |
container_volume | 38 |
creator | Boshoff, G Duncan, J Rose, P.D |
description | Tannery effluent was assessed as a carbon source for biological sulphate reduction in a pilot-scale upflow anaerobic sludge blanket (UASB), stirred tank reactor (STR) and trench reactor (TR). Sulphate removals of between 60–80% were obtained in all three reactors at total sulphate feed levels of up to 1800
mg
l
−1. Sulphate removal in the TR (400–500
mg SO
4
l
−1
day
−1) and UASB (up to 600
mg SO
4
l
−1
day
−1) were higher than those obtained in the STR (250
mg SO
4
l
1
day
−1). A change in operation mode from a UASB to a STR had a large impact on chemical oxygen demand (COD) removal efficiencies. COD removal rates decreased by 25% from 600–700
mg COD
l
−1
day
−1 to 200–600
mg COD
l
−1
day
−1. The TR had an average COD removal rate of 500
mg COD
l
−1
day
−1. Large quantities of sulphide were produced in the reactors (up to 1500
mg
l
−1). However due to the elevated pH in the reactor, only a small amount was in the form of H
2S and thus the odour problem normally associated with biological sulphate reduction was not present. |
doi_str_mv | 10.1016/j.watres.2004.03.030 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_16174035</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0043135404001654</els_id><sourcerecordid>16174035</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-423fdcd6771ad3251764144a567770bc70d32fcf9f04153e1066d4815c54ffcb3</originalsourceid><addsrcrecordid>eNqF0E1r3DAQBmBRUppN0n9QGl3amzczlmStL4EQ0g8I9NDkLGR5lGrxWhvJTsi_r4IX2lMLAwLNM4P0MvYBYY2AzcV2_WynRHldA8g1iFLwhq1wo9uqlnJzxFalISoUSh6zk5y3AFDXon3HjlHVoFWrVuzmzo4jpRdO3g8zjRO3mVvubOriyHOckyPuY-JdiEN8CM4OPM_D_pediCfqZzeFOJ6xt94Omd4fzlN2_-Xm7vpbdfvj6_frq9vKSS2nStbC965vtEbbi1qhbiRKaVW50dA5DeXWO996kKgEITRNLzeonJLeu06css_L3n2KjzPlyexCdjQMdqQ4Z4MNaglC_R9KDcW1BcoFuhRzTuTNPoWdTS8GwbzmbLZmydm85mxAlIIy9vGwf-521P8ZOgRbwKcDsLlk5pMdXch_uRYkABZ3vjhvo7EPqZj7n3VpAEL5PW6KuFwElWCfAiWTXaDRUR8Sucn0Mfz7rb8B392lcg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>14700359</pqid></control><display><type>article</type><title>Tannery effluent as a carbon source for biological sulphate reduction</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Boshoff, G ; Duncan, J ; Rose, P.D</creator><creatorcontrib>Boshoff, G ; Duncan, J ; Rose, P.D</creatorcontrib><description>Tannery effluent was assessed as a carbon source for biological sulphate reduction in a pilot-scale upflow anaerobic sludge blanket (UASB), stirred tank reactor (STR) and trench reactor (TR). Sulphate removals of between 60–80% were obtained in all three reactors at total sulphate feed levels of up to 1800
mg
l
−1. Sulphate removal in the TR (400–500
mg SO
4
l
−1
day
−1) and UASB (up to 600
mg SO
4
l
−1
day
−1) were higher than those obtained in the STR (250
mg SO
4
l
1
day
−1). A change in operation mode from a UASB to a STR had a large impact on chemical oxygen demand (COD) removal efficiencies. COD removal rates decreased by 25% from 600–700
mg COD
l
−1
day
−1 to 200–600
mg COD
l
−1
day
−1. The TR had an average COD removal rate of 500
mg COD
l
−1
day
−1. Large quantities of sulphide were produced in the reactors (up to 1500
mg
l
−1). However due to the elevated pH in the reactor, only a small amount was in the form of H
2S and thus the odour problem normally associated with biological sulphate reduction was not present.</description><identifier>ISSN: 0043-1354</identifier><identifier>EISSN: 1879-2448</identifier><identifier>DOI: 10.1016/j.watres.2004.03.030</identifier><identifier>PMID: 15207595</identifier><identifier>CODEN: WATRAG</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Acid mine drainage ; Anaerobic digestion ; Applied sciences ; Biological and medical sciences ; Biological treatment of waters ; Bioreactors ; Biotechnology ; Carbon - chemistry ; Environment and pollution ; Exact sciences and technology ; Fundamental and applied biological sciences. Psychology ; Hydrogen-Ion Concentration ; Industrial applications and implications. Economical aspects ; Industrial Waste ; Mining ; Oxidation-Reduction ; Pollution ; Sulfates - chemistry ; Sulfates - metabolism ; Sulfur-Reducing Bacteria ; Sulphate-reducing bacteria ; Tannery effluent ; Tanning ; Wastewaters ; Water Purification - methods ; Water treatment and pollution</subject><ispartof>Water research (Oxford), 2004-06, Vol.38 (11), p.2651-2658</ispartof><rights>2004 Elsevier Ltd</rights><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-423fdcd6771ad3251764144a567770bc70d32fcf9f04153e1066d4815c54ffcb3</citedby><cites>FETCH-LOGICAL-c474t-423fdcd6771ad3251764144a567770bc70d32fcf9f04153e1066d4815c54ffcb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.watres.2004.03.030$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15904001$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15207595$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Boshoff, G</creatorcontrib><creatorcontrib>Duncan, J</creatorcontrib><creatorcontrib>Rose, P.D</creatorcontrib><title>Tannery effluent as a carbon source for biological sulphate reduction</title><title>Water research (Oxford)</title><addtitle>Water Res</addtitle><description>Tannery effluent was assessed as a carbon source for biological sulphate reduction in a pilot-scale upflow anaerobic sludge blanket (UASB), stirred tank reactor (STR) and trench reactor (TR). Sulphate removals of between 60–80% were obtained in all three reactors at total sulphate feed levels of up to 1800
mg
l
−1. Sulphate removal in the TR (400–500
mg SO
4
l
−1
day
−1) and UASB (up to 600
mg SO
4
l
−1
day
−1) were higher than those obtained in the STR (250
mg SO
4
l
1
day
−1). A change in operation mode from a UASB to a STR had a large impact on chemical oxygen demand (COD) removal efficiencies. COD removal rates decreased by 25% from 600–700
mg COD
l
−1
day
−1 to 200–600
mg COD
l
−1
day
−1. The TR had an average COD removal rate of 500
mg COD
l
−1
day
−1. Large quantities of sulphide were produced in the reactors (up to 1500
mg
l
−1). However due to the elevated pH in the reactor, only a small amount was in the form of H
2S and thus the odour problem normally associated with biological sulphate reduction was not present.</description><subject>Acid mine drainage</subject><subject>Anaerobic digestion</subject><subject>Applied sciences</subject><subject>Biological and medical sciences</subject><subject>Biological treatment of waters</subject><subject>Bioreactors</subject><subject>Biotechnology</subject><subject>Carbon - chemistry</subject><subject>Environment and pollution</subject><subject>Exact sciences and technology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Hydrogen-Ion Concentration</subject><subject>Industrial applications and implications. Economical aspects</subject><subject>Industrial Waste</subject><subject>Mining</subject><subject>Oxidation-Reduction</subject><subject>Pollution</subject><subject>Sulfates - chemistry</subject><subject>Sulfates - metabolism</subject><subject>Sulfur-Reducing Bacteria</subject><subject>Sulphate-reducing bacteria</subject><subject>Tannery effluent</subject><subject>Tanning</subject><subject>Wastewaters</subject><subject>Water Purification - methods</subject><subject>Water treatment and pollution</subject><issn>0043-1354</issn><issn>1879-2448</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0E1r3DAQBmBRUppN0n9QGl3amzczlmStL4EQ0g8I9NDkLGR5lGrxWhvJTsi_r4IX2lMLAwLNM4P0MvYBYY2AzcV2_WynRHldA8g1iFLwhq1wo9uqlnJzxFalISoUSh6zk5y3AFDXon3HjlHVoFWrVuzmzo4jpRdO3g8zjRO3mVvubOriyHOckyPuY-JdiEN8CM4OPM_D_pediCfqZzeFOJ6xt94Omd4fzlN2_-Xm7vpbdfvj6_frq9vKSS2nStbC965vtEbbi1qhbiRKaVW50dA5DeXWO996kKgEITRNLzeonJLeu06css_L3n2KjzPlyexCdjQMdqQ4Z4MNaglC_R9KDcW1BcoFuhRzTuTNPoWdTS8GwbzmbLZmydm85mxAlIIy9vGwf-521P8ZOgRbwKcDsLlk5pMdXch_uRYkABZ3vjhvo7EPqZj7n3VpAEL5PW6KuFwElWCfAiWTXaDRUR8Sucn0Mfz7rb8B392lcg</recordid><startdate>20040601</startdate><enddate>20040601</enddate><creator>Boshoff, G</creator><creator>Duncan, J</creator><creator>Rose, P.D</creator><general>Elsevier Ltd</general><general>Elsevier Science</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope><scope>7QH</scope><scope>7UA</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope></search><sort><creationdate>20040601</creationdate><title>Tannery effluent as a carbon source for biological sulphate reduction</title><author>Boshoff, G ; Duncan, J ; Rose, P.D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-423fdcd6771ad3251764144a567770bc70d32fcf9f04153e1066d4815c54ffcb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Acid mine drainage</topic><topic>Anaerobic digestion</topic><topic>Applied sciences</topic><topic>Biological and medical sciences</topic><topic>Biological treatment of waters</topic><topic>Bioreactors</topic><topic>Biotechnology</topic><topic>Carbon - chemistry</topic><topic>Environment and pollution</topic><topic>Exact sciences and technology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Hydrogen-Ion Concentration</topic><topic>Industrial applications and implications. Economical aspects</topic><topic>Industrial Waste</topic><topic>Mining</topic><topic>Oxidation-Reduction</topic><topic>Pollution</topic><topic>Sulfates - chemistry</topic><topic>Sulfates - metabolism</topic><topic>Sulfur-Reducing Bacteria</topic><topic>Sulphate-reducing bacteria</topic><topic>Tannery effluent</topic><topic>Tanning</topic><topic>Wastewaters</topic><topic>Water Purification - methods</topic><topic>Water treatment and pollution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boshoff, G</creatorcontrib><creatorcontrib>Duncan, J</creatorcontrib><creatorcontrib>Rose, P.D</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><jtitle>Water research (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boshoff, G</au><au>Duncan, J</au><au>Rose, P.D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tannery effluent as a carbon source for biological sulphate reduction</atitle><jtitle>Water research (Oxford)</jtitle><addtitle>Water Res</addtitle><date>2004-06-01</date><risdate>2004</risdate><volume>38</volume><issue>11</issue><spage>2651</spage><epage>2658</epage><pages>2651-2658</pages><issn>0043-1354</issn><eissn>1879-2448</eissn><coden>WATRAG</coden><abstract>Tannery effluent was assessed as a carbon source for biological sulphate reduction in a pilot-scale upflow anaerobic sludge blanket (UASB), stirred tank reactor (STR) and trench reactor (TR). Sulphate removals of between 60–80% were obtained in all three reactors at total sulphate feed levels of up to 1800
mg
l
−1. Sulphate removal in the TR (400–500
mg SO
4
l
−1
day
−1) and UASB (up to 600
mg SO
4
l
−1
day
−1) were higher than those obtained in the STR (250
mg SO
4
l
1
day
−1). A change in operation mode from a UASB to a STR had a large impact on chemical oxygen demand (COD) removal efficiencies. COD removal rates decreased by 25% from 600–700
mg COD
l
−1
day
−1 to 200–600
mg COD
l
−1
day
−1. The TR had an average COD removal rate of 500
mg COD
l
−1
day
−1. Large quantities of sulphide were produced in the reactors (up to 1500
mg
l
−1). However due to the elevated pH in the reactor, only a small amount was in the form of H
2S and thus the odour problem normally associated with biological sulphate reduction was not present.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><pmid>15207595</pmid><doi>10.1016/j.watres.2004.03.030</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0043-1354 |
ispartof | Water research (Oxford), 2004-06, Vol.38 (11), p.2651-2658 |
issn | 0043-1354 1879-2448 |
language | eng |
recordid | cdi_proquest_miscellaneous_16174035 |
source | MEDLINE; Access via ScienceDirect (Elsevier) |
subjects | Acid mine drainage Anaerobic digestion Applied sciences Biological and medical sciences Biological treatment of waters Bioreactors Biotechnology Carbon - chemistry Environment and pollution Exact sciences and technology Fundamental and applied biological sciences. Psychology Hydrogen-Ion Concentration Industrial applications and implications. Economical aspects Industrial Waste Mining Oxidation-Reduction Pollution Sulfates - chemistry Sulfates - metabolism Sulfur-Reducing Bacteria Sulphate-reducing bacteria Tannery effluent Tanning Wastewaters Water Purification - methods Water treatment and pollution |
title | Tannery effluent as a carbon source for biological sulphate reduction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T08%3A16%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tannery%20effluent%20as%20a%20carbon%20source%20for%20biological%20sulphate%20reduction&rft.jtitle=Water%20research%20(Oxford)&rft.au=Boshoff,%20G&rft.date=2004-06-01&rft.volume=38&rft.issue=11&rft.spage=2651&rft.epage=2658&rft.pages=2651-2658&rft.issn=0043-1354&rft.eissn=1879-2448&rft.coden=WATRAG&rft_id=info:doi/10.1016/j.watres.2004.03.030&rft_dat=%3Cproquest_cross%3E16174035%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=14700359&rft_id=info:pmid/15207595&rft_els_id=S0043135404001654&rfr_iscdi=true |