Variations in sensitivity to copper and zinc among three isolated populations of the seagrass, Zostera capricorni

Metal accumulation in seagrass is well documented, but toxic impacts and mechanisms of tolerance in seagrass are not well understood. We looked at the impacts of 10 h exposure to copper and zinc for three isolated populations of Zostera capricorni in the Sydney (Australia) region. Photosynthetic eff...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of experimental marine biology and ecology 2004-04, Vol.302 (1), p.63-83
Hauptverfasser: Macinnis-Ng, Catriona M.O, Ralph, Peter J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Metal accumulation in seagrass is well documented, but toxic impacts and mechanisms of tolerance in seagrass are not well understood. We looked at the impacts of 10 h exposure to copper and zinc for three isolated populations of Zostera capricorni in the Sydney (Australia) region. Photosynthetic efficiency (measured as the effective quantum yield, ΔF/Fm′) and chlorophyll pigment concentrations showed different sensitivities to metal impacts at the three geographically isolated sites. Seagrasses from the least developed estuary were the most sensitive to metals and the two more developed estuaries had more tolerant populations. Determination of metal concentrations in the leaves showed that there was no difference in metal exclusion as the sensitive seagrass accumulated no more metal than the tolerant seagrass. Equally, background levels of copper and zinc in the sediments and seagrass tissue could not explain the differences in tolerance. We discuss some other possible mechanisms of tolerance. The outcomes suggest that assessing metal content in seagrass tissue may not demonstrate degree of photosynthetic impact.
ISSN:0022-0981
1879-1697
DOI:10.1016/j.jembe.2003.10.002