Cell surface oligosaccharides on Dictyostelium during development

Developmental studies of the changes in protein glycosylation are useful in elucidating the role of oligosaccharides in biological events. We have used the chemical technique, hydrazinolysis, to release oligosaccharides from cell surface glycoproteins of Dictyostelium discoideum. Oligomannose type,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of cell science 1991, Vol.99 (3), p.485-495
Hauptverfasser: Amatayakul-Chantler, S, Ferguson, M.A.J, Dwek, R.A, Rademacher, T.W, Parekh, R.B, Crandell, I.E, Newell, P.C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Developmental studies of the changes in protein glycosylation are useful in elucidating the role of oligosaccharides in biological events. We have used the chemical technique, hydrazinolysis, to release oligosaccharides from cell surface glycoproteins of Dictyostelium discoideum. Oligomannose type, xylose- and fucose-containing oligosaccharides were found to be present. The charged oligosaccharides contained sulphate and mannose 6-phosphate residues; no sialic acid was detected. The charged oligosaccharides also contained significant amounts of xylose, arabinose, fucose and galactose, as well as mannose and N-acetylglucosamine, which were the main constituents of the neutral glycans. By monitoring the chemical characteristics of the liberated oligosaccharides, dramatic changes in both the charge and size distribution of cell surface oligosaccharides were observed throughout the 24 h period of cell development. A comparison, however, between the neutral glycan structures of prestalk and prespore cells, over the same time frame showed no dramatic differences. Discoidin, a lectin present on the cell surface of 8 h cells, was found not to be glycosylated. Affinity chromatography using immobilised discoidin was used to probe a sugar library made from the cell surface glycoproteins of 8h cells. Discoidin was found to bind selectively an oligosaccharide with the structure Manα3(Manα6)(Xylβ2)Manβ4GlcNAc. This oligosaccharide lacks a conventional N,N′-diacetyl- chitobiose core and has only been previously observed in plant glycoproteins. Peptide-N-glycosidase F treatment of horseradish peroxidase released an identical structure, confirming that the oligosaccharide was not a degradation fragment of the hydrazine. The oligosaccharide was found to inhibit discoidin-mediated haemagglutination with a Ki of 0.75 mM, a concentration approximately 100 times lower than that for galactose. The correlation between changes in the amoebal plasma membrane oligosaccharide structures and the biological events occurring at different stages of development such as cell-cell adhesion and cell-substratum attachment suggest an important role for sugars in these processes.
ISSN:0021-9533
1477-9137
DOI:10.1242/jcs.99.3.485