container_end_page 2131
container_issue 6
container_start_page 2122
container_title Journal of environmental quality
container_volume 32
creator Merritt, K.A
Erich, M.S
description Bulk and low molecular weight (LMW) (
doi_str_mv 10.2134/jeq2003.2122
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_16168831</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>16168831</sourcerecordid><originalsourceid>FETCH-LOGICAL-a6022-4f61f3adde95c5567a8ed88f64900cd672772f7536db35a04bd7048dd51a7a283</originalsourceid><addsrcrecordid>eNqFkctrFTEUxoMo9rZ151oHQVeO5p3MspRWWwpFalcuQiaPSy4zyTSZQe5_by53oOBCIa-T_PKdnHwAvEXwC0aEft25JwwhqQHGL8AGMSJaXIeXYAMhrWuK2Qk4LWUHIcJQ8NfgBFEuKCN0A37dRD8sLhrXJN-kvNUxmGbU8-xyY51J45RKmEOKTW0lDUs_uMbo3NdQR9uEuTQmTZPLbR-iDXFbTydtwrw_B6-8Hop7s85n4PH66ufl9_bu_tvN5cVdqznEuKWeI0-0ta5jhjEutHRWSs9pB6GxXGAhsBeMcNsTpiHtrYBUWsuQFhpLcgY-HXWnnJ4WV2Y1hmLcMOjo0lIU4ohLSdD_Qcolk4RW8MNf4C4tOdYiFOoEkRzRQ9rPR8jkVEp2Xk05jDrvFYLqYI1arVEHayr-btVc-tHZZ3j1ogIfV0AXowefdTShPHMMy67-QuW6I_c7DG7_z6Tq9uoHPvS6sT7i_fGu10npba76jw8YIgJhRzirVf0B-r2vwg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>197386148</pqid></control><display><type>article</type><title>Influence of organic matter decomposition on soluble carbon and its copper-binding capacity</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Merritt, K.A ; Erich, M.S</creator><creatorcontrib>Merritt, K.A ; Erich, M.S</creatorcontrib><description>Bulk and low molecular weight (LMW) (&lt;1 kDa) water-extractable carbon were collected from fresh and microbially degraded wheat straw (Triticum aestivum L.) and crimson clover (Trifolium incarnatum L.) residues to monitor early-stage humification over an 8-wk incubation. Copper complexation parameters were determined for both bulk and LMW water-extractable C for both plant materials in a separate 1-wk incubation. Humification progressed through increasing molar absorptivity (A285) and phenolic and total acidity (TA), and through an increase in average molecular size and degree of polymerization as determined by ultrafiltration and changes in fluorescence peak locations. Such dynamic transformations demonstrate that while humification is a bulk property, with C breakdown and stabilization occurring simultaneously and continuously in soil, its early stages can be effectively monitored for fresh plant residues. Significant changes consistently occurred during the first 7 d of the incubation and were more pronounced for LMW fractions than bulk extracts. For both residues, water-extractable C extracted initially and following a 7-d incubation desorbed and complexed 0.11 to 0.55 mmol resin-bound Cu g-1 C. Low molecular weight water-extractable C generated the higher values within this range, and values increased consistently following incubation. Potential concerns regarding LMW soluble Cu complexes include percolation through soils or runoff into adjacent water bodies as well as effects on plant root development.</description><identifier>ISSN: 0047-2425</identifier><identifier>EISSN: 1537-2537</identifier><identifier>DOI: 10.2134/jeq2003.2122</identifier><identifier>PMID: 14674534</identifier><identifier>CODEN: JEVQAA</identifier><language>eng</language><publisher>Madison: American Society of Agronomy, Crop Science Society of America, Soil Science Society</publisher><subject>Acidity ; Applied sciences ; binding capacity ; Biodegradation, Environmental ; Biological and physicochemical properties of pollutants. Interaction in the soil ; Carbon - chemistry ; Carbon - metabolism ; Copper ; Copper - metabolism ; crop residues ; degradation ; dissolved organic carbon ; Earth sciences ; Earth, ocean, space ; Engineering and environment geology. Geothermics ; Environmental Monitoring ; Exact sciences and technology ; Geochemistry ; Humans ; Humification ; Organic matter ; Phenols ; Plant extracts ; Pollution ; Pollution, environment geology ; Root development ; Soil and rock geochemistry ; Soil and sediments pollution ; soil microorganisms ; soil pH ; Soil Pollutants - metabolism ; Solubility ; Trifolium - metabolism ; Trifolium incarnatum ; Triticum - metabolism ; Triticum aestivum ; Ultrafiltration ; Water Pollutants, Chemical - metabolism ; Wheat straw</subject><ispartof>Journal of environmental quality, 2003-11, Vol.32 (6), p.2122-2131</ispartof><rights>ASA, CSSA, SSSA</rights><rights>2004 INIST-CNRS</rights><rights>Copyright American Society of Agronomy Nov/Dec 2003</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a6022-4f61f3adde95c5567a8ed88f64900cd672772f7536db35a04bd7048dd51a7a283</citedby><cites>FETCH-LOGICAL-a6022-4f61f3adde95c5567a8ed88f64900cd672772f7536db35a04bd7048dd51a7a283</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.2134%2Fjeq2003.2122$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.2134%2Fjeq2003.2122$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15289753$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/14674534$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Merritt, K.A</creatorcontrib><creatorcontrib>Erich, M.S</creatorcontrib><title>Influence of organic matter decomposition on soluble carbon and its copper-binding capacity</title><title>Journal of environmental quality</title><addtitle>J Environ Qual</addtitle><description>Bulk and low molecular weight (LMW) (&lt;1 kDa) water-extractable carbon were collected from fresh and microbially degraded wheat straw (Triticum aestivum L.) and crimson clover (Trifolium incarnatum L.) residues to monitor early-stage humification over an 8-wk incubation. Copper complexation parameters were determined for both bulk and LMW water-extractable C for both plant materials in a separate 1-wk incubation. Humification progressed through increasing molar absorptivity (A285) and phenolic and total acidity (TA), and through an increase in average molecular size and degree of polymerization as determined by ultrafiltration and changes in fluorescence peak locations. Such dynamic transformations demonstrate that while humification is a bulk property, with C breakdown and stabilization occurring simultaneously and continuously in soil, its early stages can be effectively monitored for fresh plant residues. Significant changes consistently occurred during the first 7 d of the incubation and were more pronounced for LMW fractions than bulk extracts. For both residues, water-extractable C extracted initially and following a 7-d incubation desorbed and complexed 0.11 to 0.55 mmol resin-bound Cu g-1 C. Low molecular weight water-extractable C generated the higher values within this range, and values increased consistently following incubation. Potential concerns regarding LMW soluble Cu complexes include percolation through soils or runoff into adjacent water bodies as well as effects on plant root development.</description><subject>Acidity</subject><subject>Applied sciences</subject><subject>binding capacity</subject><subject>Biodegradation, Environmental</subject><subject>Biological and physicochemical properties of pollutants. Interaction in the soil</subject><subject>Carbon - chemistry</subject><subject>Carbon - metabolism</subject><subject>Copper</subject><subject>Copper - metabolism</subject><subject>crop residues</subject><subject>degradation</subject><subject>dissolved organic carbon</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Engineering and environment geology. Geothermics</subject><subject>Environmental Monitoring</subject><subject>Exact sciences and technology</subject><subject>Geochemistry</subject><subject>Humans</subject><subject>Humification</subject><subject>Organic matter</subject><subject>Phenols</subject><subject>Plant extracts</subject><subject>Pollution</subject><subject>Pollution, environment geology</subject><subject>Root development</subject><subject>Soil and rock geochemistry</subject><subject>Soil and sediments pollution</subject><subject>soil microorganisms</subject><subject>soil pH</subject><subject>Soil Pollutants - metabolism</subject><subject>Solubility</subject><subject>Trifolium - metabolism</subject><subject>Trifolium incarnatum</subject><subject>Triticum - metabolism</subject><subject>Triticum aestivum</subject><subject>Ultrafiltration</subject><subject>Water Pollutants, Chemical - metabolism</subject><subject>Wheat straw</subject><issn>0047-2425</issn><issn>1537-2537</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkctrFTEUxoMo9rZ151oHQVeO5p3MspRWWwpFalcuQiaPSy4zyTSZQe5_by53oOBCIa-T_PKdnHwAvEXwC0aEft25JwwhqQHGL8AGMSJaXIeXYAMhrWuK2Qk4LWUHIcJQ8NfgBFEuKCN0A37dRD8sLhrXJN-kvNUxmGbU8-xyY51J45RKmEOKTW0lDUs_uMbo3NdQR9uEuTQmTZPLbR-iDXFbTydtwrw_B6-8Hop7s85n4PH66ufl9_bu_tvN5cVdqznEuKWeI0-0ta5jhjEutHRWSs9pB6GxXGAhsBeMcNsTpiHtrYBUWsuQFhpLcgY-HXWnnJ4WV2Y1hmLcMOjo0lIU4ohLSdD_Qcolk4RW8MNf4C4tOdYiFOoEkRzRQ9rPR8jkVEp2Xk05jDrvFYLqYI1arVEHayr-btVc-tHZZ3j1ogIfV0AXowefdTShPHMMy67-QuW6I_c7DG7_z6Tq9uoHPvS6sT7i_fGu10npba76jw8YIgJhRzirVf0B-r2vwg</recordid><startdate>200311</startdate><enddate>200311</enddate><creator>Merritt, K.A</creator><creator>Erich, M.S</creator><general>American Society of Agronomy, Crop Science Society of America, Soil Science Society</general><general>Crop Science Society of America</general><general>American Society of Agronomy</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7ST</scope><scope>7T7</scope><scope>7TG</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KL.</scope><scope>L6V</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P64</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0X</scope><scope>SOI</scope><scope>7TV</scope></search><sort><creationdate>200311</creationdate><title>Influence of organic matter decomposition on soluble carbon and its copper-binding capacity</title><author>Merritt, K.A ; Erich, M.S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a6022-4f61f3adde95c5567a8ed88f64900cd672772f7536db35a04bd7048dd51a7a283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Acidity</topic><topic>Applied sciences</topic><topic>binding capacity</topic><topic>Biodegradation, Environmental</topic><topic>Biological and physicochemical properties of pollutants. Interaction in the soil</topic><topic>Carbon - chemistry</topic><topic>Carbon - metabolism</topic><topic>Copper</topic><topic>Copper - metabolism</topic><topic>crop residues</topic><topic>degradation</topic><topic>dissolved organic carbon</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Engineering and environment geology. Geothermics</topic><topic>Environmental Monitoring</topic><topic>Exact sciences and technology</topic><topic>Geochemistry</topic><topic>Humans</topic><topic>Humification</topic><topic>Organic matter</topic><topic>Phenols</topic><topic>Plant extracts</topic><topic>Pollution</topic><topic>Pollution, environment geology</topic><topic>Root development</topic><topic>Soil and rock geochemistry</topic><topic>Soil and sediments pollution</topic><topic>soil microorganisms</topic><topic>soil pH</topic><topic>Soil Pollutants - metabolism</topic><topic>Solubility</topic><topic>Trifolium - metabolism</topic><topic>Trifolium incarnatum</topic><topic>Triticum - metabolism</topic><topic>Triticum aestivum</topic><topic>Ultrafiltration</topic><topic>Water Pollutants, Chemical - metabolism</topic><topic>Wheat straw</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Merritt, K.A</creatorcontrib><creatorcontrib>Erich, M.S</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>Pollution Abstracts</collection><jtitle>Journal of environmental quality</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Merritt, K.A</au><au>Erich, M.S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of organic matter decomposition on soluble carbon and its copper-binding capacity</atitle><jtitle>Journal of environmental quality</jtitle><addtitle>J Environ Qual</addtitle><date>2003-11</date><risdate>2003</risdate><volume>32</volume><issue>6</issue><spage>2122</spage><epage>2131</epage><pages>2122-2131</pages><issn>0047-2425</issn><eissn>1537-2537</eissn><coden>JEVQAA</coden><abstract>Bulk and low molecular weight (LMW) (&lt;1 kDa) water-extractable carbon were collected from fresh and microbially degraded wheat straw (Triticum aestivum L.) and crimson clover (Trifolium incarnatum L.) residues to monitor early-stage humification over an 8-wk incubation. Copper complexation parameters were determined for both bulk and LMW water-extractable C for both plant materials in a separate 1-wk incubation. Humification progressed through increasing molar absorptivity (A285) and phenolic and total acidity (TA), and through an increase in average molecular size and degree of polymerization as determined by ultrafiltration and changes in fluorescence peak locations. Such dynamic transformations demonstrate that while humification is a bulk property, with C breakdown and stabilization occurring simultaneously and continuously in soil, its early stages can be effectively monitored for fresh plant residues. Significant changes consistently occurred during the first 7 d of the incubation and were more pronounced for LMW fractions than bulk extracts. For both residues, water-extractable C extracted initially and following a 7-d incubation desorbed and complexed 0.11 to 0.55 mmol resin-bound Cu g-1 C. Low molecular weight water-extractable C generated the higher values within this range, and values increased consistently following incubation. Potential concerns regarding LMW soluble Cu complexes include percolation through soils or runoff into adjacent water bodies as well as effects on plant root development.</abstract><cop>Madison</cop><pub>American Society of Agronomy, Crop Science Society of America, Soil Science Society</pub><pmid>14674534</pmid><doi>10.2134/jeq2003.2122</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0047-2425
ispartof Journal of environmental quality, 2003-11, Vol.32 (6), p.2122-2131
issn 0047-2425
1537-2537
language eng
recordid cdi_proquest_miscellaneous_16168831
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Acidity
Applied sciences
binding capacity
Biodegradation, Environmental
Biological and physicochemical properties of pollutants. Interaction in the soil
Carbon - chemistry
Carbon - metabolism
Copper
Copper - metabolism
crop residues
degradation
dissolved organic carbon
Earth sciences
Earth, ocean, space
Engineering and environment geology. Geothermics
Environmental Monitoring
Exact sciences and technology
Geochemistry
Humans
Humification
Organic matter
Phenols
Plant extracts
Pollution
Pollution, environment geology
Root development
Soil and rock geochemistry
Soil and sediments pollution
soil microorganisms
soil pH
Soil Pollutants - metabolism
Solubility
Trifolium - metabolism
Trifolium incarnatum
Triticum - metabolism
Triticum aestivum
Ultrafiltration
Water Pollutants, Chemical - metabolism
Wheat straw
title Influence of organic matter decomposition on soluble carbon and its copper-binding capacity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T10%3A16%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20organic%20matter%20decomposition%20on%20soluble%20carbon%20and%20its%20copper-binding%20capacity&rft.jtitle=Journal%20of%20environmental%20quality&rft.au=Merritt,%20K.A&rft.date=2003-11&rft.volume=32&rft.issue=6&rft.spage=2122&rft.epage=2131&rft.pages=2122-2131&rft.issn=0047-2425&rft.eissn=1537-2537&rft.coden=JEVQAA&rft_id=info:doi/10.2134/jeq2003.2122&rft_dat=%3Cproquest_cross%3E16168831%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=197386148&rft_id=info:pmid/14674534&rfr_iscdi=true