Influence of organic matter decomposition on soluble carbon and its copper-binding capacity
Bulk and low molecular weight (LMW) (
Gespeichert in:
Veröffentlicht in: | Journal of environmental quality 2003-11, Vol.32 (6), p.2122-2131 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2131 |
---|---|
container_issue | 6 |
container_start_page | 2122 |
container_title | Journal of environmental quality |
container_volume | 32 |
creator | Merritt, K.A Erich, M.S |
description | Bulk and low molecular weight (LMW) ( |
doi_str_mv | 10.2134/jeq2003.2122 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_16168831</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>16168831</sourcerecordid><originalsourceid>FETCH-LOGICAL-a6022-4f61f3adde95c5567a8ed88f64900cd672772f7536db35a04bd7048dd51a7a283</originalsourceid><addsrcrecordid>eNqFkctrFTEUxoMo9rZ151oHQVeO5p3MspRWWwpFalcuQiaPSy4zyTSZQe5_by53oOBCIa-T_PKdnHwAvEXwC0aEft25JwwhqQHGL8AGMSJaXIeXYAMhrWuK2Qk4LWUHIcJQ8NfgBFEuKCN0A37dRD8sLhrXJN-kvNUxmGbU8-xyY51J45RKmEOKTW0lDUs_uMbo3NdQR9uEuTQmTZPLbR-iDXFbTydtwrw_B6-8Hop7s85n4PH66ufl9_bu_tvN5cVdqznEuKWeI0-0ta5jhjEutHRWSs9pB6GxXGAhsBeMcNsTpiHtrYBUWsuQFhpLcgY-HXWnnJ4WV2Y1hmLcMOjo0lIU4ohLSdD_Qcolk4RW8MNf4C4tOdYiFOoEkRzRQ9rPR8jkVEp2Xk05jDrvFYLqYI1arVEHayr-btVc-tHZZ3j1ogIfV0AXowefdTShPHMMy67-QuW6I_c7DG7_z6Tq9uoHPvS6sT7i_fGu10npba76jw8YIgJhRzirVf0B-r2vwg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>197386148</pqid></control><display><type>article</type><title>Influence of organic matter decomposition on soluble carbon and its copper-binding capacity</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Merritt, K.A ; Erich, M.S</creator><creatorcontrib>Merritt, K.A ; Erich, M.S</creatorcontrib><description>Bulk and low molecular weight (LMW) (<1 kDa) water-extractable carbon were collected from fresh and microbially degraded wheat straw (Triticum aestivum L.) and crimson clover (Trifolium incarnatum L.) residues to monitor early-stage humification over an 8-wk incubation. Copper complexation parameters were determined for both bulk and LMW water-extractable C for both plant materials in a separate 1-wk incubation. Humification progressed through increasing molar absorptivity (A285) and phenolic and total acidity (TA), and through an increase in average molecular size and degree of polymerization as determined by ultrafiltration and changes in fluorescence peak locations. Such dynamic transformations demonstrate that while humification is a bulk property, with C breakdown and stabilization occurring simultaneously and continuously in soil, its early stages can be effectively monitored for fresh plant residues. Significant changes consistently occurred during the first 7 d of the incubation and were more pronounced for LMW fractions than bulk extracts. For both residues, water-extractable C extracted initially and following a 7-d incubation desorbed and complexed 0.11 to 0.55 mmol resin-bound Cu g-1 C. Low molecular weight water-extractable C generated the higher values within this range, and values increased consistently following incubation. Potential concerns regarding LMW soluble Cu complexes include percolation through soils or runoff into adjacent water bodies as well as effects on plant root development.</description><identifier>ISSN: 0047-2425</identifier><identifier>EISSN: 1537-2537</identifier><identifier>DOI: 10.2134/jeq2003.2122</identifier><identifier>PMID: 14674534</identifier><identifier>CODEN: JEVQAA</identifier><language>eng</language><publisher>Madison: American Society of Agronomy, Crop Science Society of America, Soil Science Society</publisher><subject>Acidity ; Applied sciences ; binding capacity ; Biodegradation, Environmental ; Biological and physicochemical properties of pollutants. Interaction in the soil ; Carbon - chemistry ; Carbon - metabolism ; Copper ; Copper - metabolism ; crop residues ; degradation ; dissolved organic carbon ; Earth sciences ; Earth, ocean, space ; Engineering and environment geology. Geothermics ; Environmental Monitoring ; Exact sciences and technology ; Geochemistry ; Humans ; Humification ; Organic matter ; Phenols ; Plant extracts ; Pollution ; Pollution, environment geology ; Root development ; Soil and rock geochemistry ; Soil and sediments pollution ; soil microorganisms ; soil pH ; Soil Pollutants - metabolism ; Solubility ; Trifolium - metabolism ; Trifolium incarnatum ; Triticum - metabolism ; Triticum aestivum ; Ultrafiltration ; Water Pollutants, Chemical - metabolism ; Wheat straw</subject><ispartof>Journal of environmental quality, 2003-11, Vol.32 (6), p.2122-2131</ispartof><rights>ASA, CSSA, SSSA</rights><rights>2004 INIST-CNRS</rights><rights>Copyright American Society of Agronomy Nov/Dec 2003</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a6022-4f61f3adde95c5567a8ed88f64900cd672772f7536db35a04bd7048dd51a7a283</citedby><cites>FETCH-LOGICAL-a6022-4f61f3adde95c5567a8ed88f64900cd672772f7536db35a04bd7048dd51a7a283</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.2134%2Fjeq2003.2122$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.2134%2Fjeq2003.2122$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15289753$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/14674534$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Merritt, K.A</creatorcontrib><creatorcontrib>Erich, M.S</creatorcontrib><title>Influence of organic matter decomposition on soluble carbon and its copper-binding capacity</title><title>Journal of environmental quality</title><addtitle>J Environ Qual</addtitle><description>Bulk and low molecular weight (LMW) (<1 kDa) water-extractable carbon were collected from fresh and microbially degraded wheat straw (Triticum aestivum L.) and crimson clover (Trifolium incarnatum L.) residues to monitor early-stage humification over an 8-wk incubation. Copper complexation parameters were determined for both bulk and LMW water-extractable C for both plant materials in a separate 1-wk incubation. Humification progressed through increasing molar absorptivity (A285) and phenolic and total acidity (TA), and through an increase in average molecular size and degree of polymerization as determined by ultrafiltration and changes in fluorescence peak locations. Such dynamic transformations demonstrate that while humification is a bulk property, with C breakdown and stabilization occurring simultaneously and continuously in soil, its early stages can be effectively monitored for fresh plant residues. Significant changes consistently occurred during the first 7 d of the incubation and were more pronounced for LMW fractions than bulk extracts. For both residues, water-extractable C extracted initially and following a 7-d incubation desorbed and complexed 0.11 to 0.55 mmol resin-bound Cu g-1 C. Low molecular weight water-extractable C generated the higher values within this range, and values increased consistently following incubation. Potential concerns regarding LMW soluble Cu complexes include percolation through soils or runoff into adjacent water bodies as well as effects on plant root development.</description><subject>Acidity</subject><subject>Applied sciences</subject><subject>binding capacity</subject><subject>Biodegradation, Environmental</subject><subject>Biological and physicochemical properties of pollutants. Interaction in the soil</subject><subject>Carbon - chemistry</subject><subject>Carbon - metabolism</subject><subject>Copper</subject><subject>Copper - metabolism</subject><subject>crop residues</subject><subject>degradation</subject><subject>dissolved organic carbon</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Engineering and environment geology. Geothermics</subject><subject>Environmental Monitoring</subject><subject>Exact sciences and technology</subject><subject>Geochemistry</subject><subject>Humans</subject><subject>Humification</subject><subject>Organic matter</subject><subject>Phenols</subject><subject>Plant extracts</subject><subject>Pollution</subject><subject>Pollution, environment geology</subject><subject>Root development</subject><subject>Soil and rock geochemistry</subject><subject>Soil and sediments pollution</subject><subject>soil microorganisms</subject><subject>soil pH</subject><subject>Soil Pollutants - metabolism</subject><subject>Solubility</subject><subject>Trifolium - metabolism</subject><subject>Trifolium incarnatum</subject><subject>Triticum - metabolism</subject><subject>Triticum aestivum</subject><subject>Ultrafiltration</subject><subject>Water Pollutants, Chemical - metabolism</subject><subject>Wheat straw</subject><issn>0047-2425</issn><issn>1537-2537</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkctrFTEUxoMo9rZ151oHQVeO5p3MspRWWwpFalcuQiaPSy4zyTSZQe5_by53oOBCIa-T_PKdnHwAvEXwC0aEft25JwwhqQHGL8AGMSJaXIeXYAMhrWuK2Qk4LWUHIcJQ8NfgBFEuKCN0A37dRD8sLhrXJN-kvNUxmGbU8-xyY51J45RKmEOKTW0lDUs_uMbo3NdQR9uEuTQmTZPLbR-iDXFbTydtwrw_B6-8Hop7s85n4PH66ufl9_bu_tvN5cVdqznEuKWeI0-0ta5jhjEutHRWSs9pB6GxXGAhsBeMcNsTpiHtrYBUWsuQFhpLcgY-HXWnnJ4WV2Y1hmLcMOjo0lIU4ohLSdD_Qcolk4RW8MNf4C4tOdYiFOoEkRzRQ9rPR8jkVEp2Xk05jDrvFYLqYI1arVEHayr-btVc-tHZZ3j1ogIfV0AXowefdTShPHMMy67-QuW6I_c7DG7_z6Tq9uoHPvS6sT7i_fGu10npba76jw8YIgJhRzirVf0B-r2vwg</recordid><startdate>200311</startdate><enddate>200311</enddate><creator>Merritt, K.A</creator><creator>Erich, M.S</creator><general>American Society of Agronomy, Crop Science Society of America, Soil Science Society</general><general>Crop Science Society of America</general><general>American Society of Agronomy</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7ST</scope><scope>7T7</scope><scope>7TG</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KL.</scope><scope>L6V</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P64</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0X</scope><scope>SOI</scope><scope>7TV</scope></search><sort><creationdate>200311</creationdate><title>Influence of organic matter decomposition on soluble carbon and its copper-binding capacity</title><author>Merritt, K.A ; Erich, M.S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a6022-4f61f3adde95c5567a8ed88f64900cd672772f7536db35a04bd7048dd51a7a283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Acidity</topic><topic>Applied sciences</topic><topic>binding capacity</topic><topic>Biodegradation, Environmental</topic><topic>Biological and physicochemical properties of pollutants. Interaction in the soil</topic><topic>Carbon - chemistry</topic><topic>Carbon - metabolism</topic><topic>Copper</topic><topic>Copper - metabolism</topic><topic>crop residues</topic><topic>degradation</topic><topic>dissolved organic carbon</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Engineering and environment geology. Geothermics</topic><topic>Environmental Monitoring</topic><topic>Exact sciences and technology</topic><topic>Geochemistry</topic><topic>Humans</topic><topic>Humification</topic><topic>Organic matter</topic><topic>Phenols</topic><topic>Plant extracts</topic><topic>Pollution</topic><topic>Pollution, environment geology</topic><topic>Root development</topic><topic>Soil and rock geochemistry</topic><topic>Soil and sediments pollution</topic><topic>soil microorganisms</topic><topic>soil pH</topic><topic>Soil Pollutants - metabolism</topic><topic>Solubility</topic><topic>Trifolium - metabolism</topic><topic>Trifolium incarnatum</topic><topic>Triticum - metabolism</topic><topic>Triticum aestivum</topic><topic>Ultrafiltration</topic><topic>Water Pollutants, Chemical - metabolism</topic><topic>Wheat straw</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Merritt, K.A</creatorcontrib><creatorcontrib>Erich, M.S</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>Pollution Abstracts</collection><jtitle>Journal of environmental quality</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Merritt, K.A</au><au>Erich, M.S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of organic matter decomposition on soluble carbon and its copper-binding capacity</atitle><jtitle>Journal of environmental quality</jtitle><addtitle>J Environ Qual</addtitle><date>2003-11</date><risdate>2003</risdate><volume>32</volume><issue>6</issue><spage>2122</spage><epage>2131</epage><pages>2122-2131</pages><issn>0047-2425</issn><eissn>1537-2537</eissn><coden>JEVQAA</coden><abstract>Bulk and low molecular weight (LMW) (<1 kDa) water-extractable carbon were collected from fresh and microbially degraded wheat straw (Triticum aestivum L.) and crimson clover (Trifolium incarnatum L.) residues to monitor early-stage humification over an 8-wk incubation. Copper complexation parameters were determined for both bulk and LMW water-extractable C for both plant materials in a separate 1-wk incubation. Humification progressed through increasing molar absorptivity (A285) and phenolic and total acidity (TA), and through an increase in average molecular size and degree of polymerization as determined by ultrafiltration and changes in fluorescence peak locations. Such dynamic transformations demonstrate that while humification is a bulk property, with C breakdown and stabilization occurring simultaneously and continuously in soil, its early stages can be effectively monitored for fresh plant residues. Significant changes consistently occurred during the first 7 d of the incubation and were more pronounced for LMW fractions than bulk extracts. For both residues, water-extractable C extracted initially and following a 7-d incubation desorbed and complexed 0.11 to 0.55 mmol resin-bound Cu g-1 C. Low molecular weight water-extractable C generated the higher values within this range, and values increased consistently following incubation. Potential concerns regarding LMW soluble Cu complexes include percolation through soils or runoff into adjacent water bodies as well as effects on plant root development.</abstract><cop>Madison</cop><pub>American Society of Agronomy, Crop Science Society of America, Soil Science Society</pub><pmid>14674534</pmid><doi>10.2134/jeq2003.2122</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0047-2425 |
ispartof | Journal of environmental quality, 2003-11, Vol.32 (6), p.2122-2131 |
issn | 0047-2425 1537-2537 |
language | eng |
recordid | cdi_proquest_miscellaneous_16168831 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Acidity Applied sciences binding capacity Biodegradation, Environmental Biological and physicochemical properties of pollutants. Interaction in the soil Carbon - chemistry Carbon - metabolism Copper Copper - metabolism crop residues degradation dissolved organic carbon Earth sciences Earth, ocean, space Engineering and environment geology. Geothermics Environmental Monitoring Exact sciences and technology Geochemistry Humans Humification Organic matter Phenols Plant extracts Pollution Pollution, environment geology Root development Soil and rock geochemistry Soil and sediments pollution soil microorganisms soil pH Soil Pollutants - metabolism Solubility Trifolium - metabolism Trifolium incarnatum Triticum - metabolism Triticum aestivum Ultrafiltration Water Pollutants, Chemical - metabolism Wheat straw |
title | Influence of organic matter decomposition on soluble carbon and its copper-binding capacity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T10%3A16%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20organic%20matter%20decomposition%20on%20soluble%20carbon%20and%20its%20copper-binding%20capacity&rft.jtitle=Journal%20of%20environmental%20quality&rft.au=Merritt,%20K.A&rft.date=2003-11&rft.volume=32&rft.issue=6&rft.spage=2122&rft.epage=2131&rft.pages=2122-2131&rft.issn=0047-2425&rft.eissn=1537-2537&rft.coden=JEVQAA&rft_id=info:doi/10.2134/jeq2003.2122&rft_dat=%3Cproquest_cross%3E16168831%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=197386148&rft_id=info:pmid/14674534&rfr_iscdi=true |