A Novel Wheat-Dasypyrum breviaristatum Substitution Line with Stripe Rust Resistance

The introduction of genetic variation from wild and cultivated Triticeae species has been a long-standing approach for wheat improvement. Dasypyrumbreviaristatum species harbor novel and agronomically important genes for resistance against multi-fungal diseases. The development of new wheat-D. brevi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cytogenetic and genome research 2014-01, Vol.143 (4), p.280-287
Hauptverfasser: Li, Guang-Rong, Zhao, Jin-Mei, Li, Dong-Hai, Yang, En-Nian, Huang, Yu-Feng, Liu, Cheng, Yang, Zu-Jun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 287
container_issue 4
container_start_page 280
container_title Cytogenetic and genome research
container_volume 143
creator Li, Guang-Rong
Zhao, Jin-Mei
Li, Dong-Hai
Yang, En-Nian
Huang, Yu-Feng
Liu, Cheng
Yang, Zu-Jun
description The introduction of genetic variation from wild and cultivated Triticeae species has been a long-standing approach for wheat improvement. Dasypyrumbreviaristatum species harbor novel and agronomically important genes for resistance against multi-fungal diseases. The development of new wheat-D. breviaristatum introgression lines offers chances for the identification of stripe rust resistance gene(s). A wheat line, D11-5, was selected from a cross between wheat line MY11 and wheat-D. breviaristatum partial amphiploid TDH-2. It was characterized by FISH and PCR-based molecular markers. Chromosome counting revealed that the D11-5 line shows a hexaploid set of 2n = 6x = 42 chromosomes. FISH analysis using the Dasypyrum repetitive sequence pDb12H as a probe demonstrated that D11-5 contained a pair of D. breviaristatum chromosomes, while FISH with wheat D-genomic repetitive sequences revealed that the chromosome 2D was absent in D11-5. The functional molecular markers confirmed that the introduced D. breviaristatum chromosomes belong to the homoeologous group 2, indicating that D11-5 was a 2V b (2D) disomic substitution line. Field resistance showed that the introduced D. breviaristatum chromosomes 2V b were responsible for the stripe rust resistance at the adult plant stage. FISH, C-banding, and PCR-based molecular marker analysis indicated that the chromosome 2V b of D. breviaristatum was completely different from the chromosome 2V of D. villosum. The identified wheat-D. breviaristatum chromosome substitution line D11-5 may be applied to produce agronomically desirable stripe rust resistance germplasm.
doi_str_mv 10.1159/000366051
format Article
fullrecord <record><control><sourceid>proquest_karge</sourceid><recordid>TN_cdi_proquest_miscellaneous_1616477514</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3490199971</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-b8f9ac8f27938f6b428cb33441d619f2960ed4f7affa7480a3ed4bb97537a8a93</originalsourceid><addsrcrecordid>eNpd0M1LwzAYBvAgitPpwbtIwYseqkma5uM45icMhW2it5J2icvs2pqkk_33Zmz2IDkkL_nlITwAnCF4g1AqbiGECaUwRXvgCBFMYp6Kj_3uzFEPHDu3gBBxktJD0MMpJoxAfASmg-ilXqkyep8r6eM76dbN2rbLKLdqZaQ1zksfxkmbO298601dRSNTqejH-Hk08dY0Khq3zkdj5Ta6KtQJONCydOp0t_fB28P9dPgUj14fn4eDUVwkCfFxzrWQBdeYiYRrmhPMizzcEDSjSGgsKFQzopnUWjLCoUzCmOeCpQmTXIqkD662uY2tv1vlfLY0rlBlKStVty5DFFHCWIpIoJf_6KJubRV-FxTGKCyxCbzeqsLWzlmls8aapbTrDMFsU3XWVR3sxS6xzZdq1sm_bgM434IvaT-V7cDu_S8UnoFi</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1622121299</pqid></control><display><type>article</type><title>A Novel Wheat-Dasypyrum breviaristatum Substitution Line with Stripe Rust Resistance</title><source>MEDLINE</source><source>Karger Journals</source><source>Alma/SFX Local Collection</source><creator>Li, Guang-Rong ; Zhao, Jin-Mei ; Li, Dong-Hai ; Yang, En-Nian ; Huang, Yu-Feng ; Liu, Cheng ; Yang, Zu-Jun</creator><creatorcontrib>Li, Guang-Rong ; Zhao, Jin-Mei ; Li, Dong-Hai ; Yang, En-Nian ; Huang, Yu-Feng ; Liu, Cheng ; Yang, Zu-Jun</creatorcontrib><description>The introduction of genetic variation from wild and cultivated Triticeae species has been a long-standing approach for wheat improvement. Dasypyrumbreviaristatum species harbor novel and agronomically important genes for resistance against multi-fungal diseases. The development of new wheat-D. breviaristatum introgression lines offers chances for the identification of stripe rust resistance gene(s). A wheat line, D11-5, was selected from a cross between wheat line MY11 and wheat-D. breviaristatum partial amphiploid TDH-2. It was characterized by FISH and PCR-based molecular markers. Chromosome counting revealed that the D11-5 line shows a hexaploid set of 2n = 6x = 42 chromosomes. FISH analysis using the Dasypyrum repetitive sequence pDb12H as a probe demonstrated that D11-5 contained a pair of D. breviaristatum chromosomes, while FISH with wheat D-genomic repetitive sequences revealed that the chromosome 2D was absent in D11-5. The functional molecular markers confirmed that the introduced D. breviaristatum chromosomes belong to the homoeologous group 2, indicating that D11-5 was a 2V b (2D) disomic substitution line. Field resistance showed that the introduced D. breviaristatum chromosomes 2V b were responsible for the stripe rust resistance at the adult plant stage. FISH, C-banding, and PCR-based molecular marker analysis indicated that the chromosome 2V b of D. breviaristatum was completely different from the chromosome 2V of D. villosum. The identified wheat-D. breviaristatum chromosome substitution line D11-5 may be applied to produce agronomically desirable stripe rust resistance germplasm.</description><identifier>ISSN: 1424-8581</identifier><identifier>EISSN: 1424-859X</identifier><identifier>DOI: 10.1159/000366051</identifier><identifier>PMID: 25247402</identifier><language>eng</language><publisher>Basel, Switzerland: S. Karger AG</publisher><subject>Ascomycota - physiology ; Base Sequence ; Basidiomycota - physiology ; Chromosomes, Plant - genetics ; Disease Resistance - genetics ; DNA, Plant - genetics ; Hybridization, Genetic ; In Situ Hybridization, Fluorescence ; Original Article ; Plant Diseases - immunology ; Plant Diseases - microbiology ; Ploidies ; Triticum - genetics ; Triticum - immunology</subject><ispartof>Cytogenetic and genome research, 2014-01, Vol.143 (4), p.280-287</ispartof><rights>2014 S. Karger AG, Basel</rights><rights>2014 S. Karger AG, Basel.</rights><rights>Copyright (c) 2014 S. Karger AG, Basel</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-b8f9ac8f27938f6b428cb33441d619f2960ed4f7affa7480a3ed4bb97537a8a93</citedby><cites>FETCH-LOGICAL-c334t-b8f9ac8f27938f6b428cb33441d619f2960ed4f7affa7480a3ed4bb97537a8a93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2429,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25247402$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Guang-Rong</creatorcontrib><creatorcontrib>Zhao, Jin-Mei</creatorcontrib><creatorcontrib>Li, Dong-Hai</creatorcontrib><creatorcontrib>Yang, En-Nian</creatorcontrib><creatorcontrib>Huang, Yu-Feng</creatorcontrib><creatorcontrib>Liu, Cheng</creatorcontrib><creatorcontrib>Yang, Zu-Jun</creatorcontrib><title>A Novel Wheat-Dasypyrum breviaristatum Substitution Line with Stripe Rust Resistance</title><title>Cytogenetic and genome research</title><addtitle>Cytogenet Genome Res</addtitle><description>The introduction of genetic variation from wild and cultivated Triticeae species has been a long-standing approach for wheat improvement. Dasypyrumbreviaristatum species harbor novel and agronomically important genes for resistance against multi-fungal diseases. The development of new wheat-D. breviaristatum introgression lines offers chances for the identification of stripe rust resistance gene(s). A wheat line, D11-5, was selected from a cross between wheat line MY11 and wheat-D. breviaristatum partial amphiploid TDH-2. It was characterized by FISH and PCR-based molecular markers. Chromosome counting revealed that the D11-5 line shows a hexaploid set of 2n = 6x = 42 chromosomes. FISH analysis using the Dasypyrum repetitive sequence pDb12H as a probe demonstrated that D11-5 contained a pair of D. breviaristatum chromosomes, while FISH with wheat D-genomic repetitive sequences revealed that the chromosome 2D was absent in D11-5. The functional molecular markers confirmed that the introduced D. breviaristatum chromosomes belong to the homoeologous group 2, indicating that D11-5 was a 2V b (2D) disomic substitution line. Field resistance showed that the introduced D. breviaristatum chromosomes 2V b were responsible for the stripe rust resistance at the adult plant stage. FISH, C-banding, and PCR-based molecular marker analysis indicated that the chromosome 2V b of D. breviaristatum was completely different from the chromosome 2V of D. villosum. The identified wheat-D. breviaristatum chromosome substitution line D11-5 may be applied to produce agronomically desirable stripe rust resistance germplasm.</description><subject>Ascomycota - physiology</subject><subject>Base Sequence</subject><subject>Basidiomycota - physiology</subject><subject>Chromosomes, Plant - genetics</subject><subject>Disease Resistance - genetics</subject><subject>DNA, Plant - genetics</subject><subject>Hybridization, Genetic</subject><subject>In Situ Hybridization, Fluorescence</subject><subject>Original Article</subject><subject>Plant Diseases - immunology</subject><subject>Plant Diseases - microbiology</subject><subject>Ploidies</subject><subject>Triticum - genetics</subject><subject>Triticum - immunology</subject><issn>1424-8581</issn><issn>1424-859X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpd0M1LwzAYBvAgitPpwbtIwYseqkma5uM45icMhW2it5J2icvs2pqkk_33Zmz2IDkkL_nlITwAnCF4g1AqbiGECaUwRXvgCBFMYp6Kj_3uzFEPHDu3gBBxktJD0MMpJoxAfASmg-ilXqkyep8r6eM76dbN2rbLKLdqZaQ1zksfxkmbO298601dRSNTqejH-Hk08dY0Khq3zkdj5Ta6KtQJONCydOp0t_fB28P9dPgUj14fn4eDUVwkCfFxzrWQBdeYiYRrmhPMizzcEDSjSGgsKFQzopnUWjLCoUzCmOeCpQmTXIqkD662uY2tv1vlfLY0rlBlKStVty5DFFHCWIpIoJf_6KJubRV-FxTGKCyxCbzeqsLWzlmls8aapbTrDMFsU3XWVR3sxS6xzZdq1sm_bgM434IvaT-V7cDu_S8UnoFi</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Li, Guang-Rong</creator><creator>Zhao, Jin-Mei</creator><creator>Li, Dong-Hai</creator><creator>Yang, En-Nian</creator><creator>Huang, Yu-Feng</creator><creator>Liu, Cheng</creator><creator>Yang, Zu-Jun</creator><general>S. Karger AG</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>S0X</scope><scope>7X8</scope></search><sort><creationdate>20140101</creationdate><title>A Novel Wheat-Dasypyrum breviaristatum Substitution Line with Stripe Rust Resistance</title><author>Li, Guang-Rong ; Zhao, Jin-Mei ; Li, Dong-Hai ; Yang, En-Nian ; Huang, Yu-Feng ; Liu, Cheng ; Yang, Zu-Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-b8f9ac8f27938f6b428cb33441d619f2960ed4f7affa7480a3ed4bb97537a8a93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Ascomycota - physiology</topic><topic>Base Sequence</topic><topic>Basidiomycota - physiology</topic><topic>Chromosomes, Plant - genetics</topic><topic>Disease Resistance - genetics</topic><topic>DNA, Plant - genetics</topic><topic>Hybridization, Genetic</topic><topic>In Situ Hybridization, Fluorescence</topic><topic>Original Article</topic><topic>Plant Diseases - immunology</topic><topic>Plant Diseases - microbiology</topic><topic>Ploidies</topic><topic>Triticum - genetics</topic><topic>Triticum - immunology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Guang-Rong</creatorcontrib><creatorcontrib>Zhao, Jin-Mei</creatorcontrib><creatorcontrib>Li, Dong-Hai</creatorcontrib><creatorcontrib>Yang, En-Nian</creatorcontrib><creatorcontrib>Huang, Yu-Feng</creatorcontrib><creatorcontrib>Liu, Cheng</creatorcontrib><creatorcontrib>Yang, Zu-Jun</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>MEDLINE - Academic</collection><jtitle>Cytogenetic and genome research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Guang-Rong</au><au>Zhao, Jin-Mei</au><au>Li, Dong-Hai</au><au>Yang, En-Nian</au><au>Huang, Yu-Feng</au><au>Liu, Cheng</au><au>Yang, Zu-Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Novel Wheat-Dasypyrum breviaristatum Substitution Line with Stripe Rust Resistance</atitle><jtitle>Cytogenetic and genome research</jtitle><addtitle>Cytogenet Genome Res</addtitle><date>2014-01-01</date><risdate>2014</risdate><volume>143</volume><issue>4</issue><spage>280</spage><epage>287</epage><pages>280-287</pages><issn>1424-8581</issn><eissn>1424-859X</eissn><abstract>The introduction of genetic variation from wild and cultivated Triticeae species has been a long-standing approach for wheat improvement. Dasypyrumbreviaristatum species harbor novel and agronomically important genes for resistance against multi-fungal diseases. The development of new wheat-D. breviaristatum introgression lines offers chances for the identification of stripe rust resistance gene(s). A wheat line, D11-5, was selected from a cross between wheat line MY11 and wheat-D. breviaristatum partial amphiploid TDH-2. It was characterized by FISH and PCR-based molecular markers. Chromosome counting revealed that the D11-5 line shows a hexaploid set of 2n = 6x = 42 chromosomes. FISH analysis using the Dasypyrum repetitive sequence pDb12H as a probe demonstrated that D11-5 contained a pair of D. breviaristatum chromosomes, while FISH with wheat D-genomic repetitive sequences revealed that the chromosome 2D was absent in D11-5. The functional molecular markers confirmed that the introduced D. breviaristatum chromosomes belong to the homoeologous group 2, indicating that D11-5 was a 2V b (2D) disomic substitution line. Field resistance showed that the introduced D. breviaristatum chromosomes 2V b were responsible for the stripe rust resistance at the adult plant stage. FISH, C-banding, and PCR-based molecular marker analysis indicated that the chromosome 2V b of D. breviaristatum was completely different from the chromosome 2V of D. villosum. The identified wheat-D. breviaristatum chromosome substitution line D11-5 may be applied to produce agronomically desirable stripe rust resistance germplasm.</abstract><cop>Basel, Switzerland</cop><pub>S. Karger AG</pub><pmid>25247402</pmid><doi>10.1159/000366051</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1424-8581
ispartof Cytogenetic and genome research, 2014-01, Vol.143 (4), p.280-287
issn 1424-8581
1424-859X
language eng
recordid cdi_proquest_miscellaneous_1616477514
source MEDLINE; Karger Journals; Alma/SFX Local Collection
subjects Ascomycota - physiology
Base Sequence
Basidiomycota - physiology
Chromosomes, Plant - genetics
Disease Resistance - genetics
DNA, Plant - genetics
Hybridization, Genetic
In Situ Hybridization, Fluorescence
Original Article
Plant Diseases - immunology
Plant Diseases - microbiology
Ploidies
Triticum - genetics
Triticum - immunology
title A Novel Wheat-Dasypyrum breviaristatum Substitution Line with Stripe Rust Resistance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T07%3A01%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_karge&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Novel%20Wheat-Dasypyrum%20breviaristatum%20Substitution%20Line%20with%20Stripe%20Rust%20Resistance&rft.jtitle=Cytogenetic%20and%20genome%20research&rft.au=Li,%20Guang-Rong&rft.date=2014-01-01&rft.volume=143&rft.issue=4&rft.spage=280&rft.epage=287&rft.pages=280-287&rft.issn=1424-8581&rft.eissn=1424-859X&rft_id=info:doi/10.1159/000366051&rft_dat=%3Cproquest_karge%3E3490199971%3C/proquest_karge%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1622121299&rft_id=info:pmid/25247402&rfr_iscdi=true