Evaluation of the ability of an artificial neural network model to assess the variation of groundwater quality in an area of blackfoot disease in Taiwan

The back-propagation (BP) artificial neural network (ANN) is applied to forecast the variation of the quality of groundwater in the blackfoot disease area in Taiwan. Three types of BP ANN models were established to evaluate their learning performance. Model A included five concentration parameters a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water research (Oxford) 2004, Vol.38 (1), p.148-158
Hauptverfasser: Kuo, Yi-Ming, Liu, Chen-Wuing, Lin, Kao-Hung
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 158
container_issue 1
container_start_page 148
container_title Water research (Oxford)
container_volume 38
creator Kuo, Yi-Ming
Liu, Chen-Wuing
Lin, Kao-Hung
description The back-propagation (BP) artificial neural network (ANN) is applied to forecast the variation of the quality of groundwater in the blackfoot disease area in Taiwan. Three types of BP ANN models were established to evaluate their learning performance. Model A included five concentration parameters as input variables for seawater intrusion and three concentration parameters as input variables for arsenic pollutant, respectively, whereas models B and C used only one concentration parameter for each. Furthermore, model C used seasonal data from two seasons to train the ANN, whereas models A and C used only data from one season. The results indicate that model C outperforms models A and B. Model C can describe complex variation of groundwater quality and be used to perform reliable forecasting. Moreover, the number of hidden nodes does not significantly influence the performance of the ANN model in training or testing.
doi_str_mv 10.1016/j.watres.2003.09.026
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_16159547</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0043135403005013</els_id><sourcerecordid>14681145</sourcerecordid><originalsourceid>FETCH-LOGICAL-a609t-815fa1fd15e1cc3220aa6e94eeca2be66523cc3194e1b0d21c291b19989d92c83</originalsourceid><addsrcrecordid>eNqFkc9u1DAQhyMEotvCGyDIhd4SPI7jjS9IVVX-SJU40J6tiTMp3mbj1nZ21TfhcXE2K3qD08jjbz6N5pdl74CVwEB-2pR7jJ5CyRmrSqZKxuWLbAXNWhVciOZltmJMVAVUtTjJTkPYMMY4r9Tr7ASErBgAX2W_r3Y4TBitG3PX5_EX5djawcan-Yljjj7a3hqLQz7S5A8l7p2_z7euoyGPLscQKITD7A69_Su7824au7Ql-fxxwoPUjouUcCbaAc1971zMOxsIA83_N2j3OL7JXvU4BHp7rGfZ7Zerm8tvxfWPr98vL64LlEzFooG6R-g7qAmMqThniJKUIDLIW5Ky5lXqQ-pAyzoOhitoQalGdYqbpjrLzhfvg3ePE4WotzYYGgYcyU1Bg4Ra1WL9f1DIBkDUCRQLaLwLwVOvH7zdon_SwPQcnd7oJTo9R6eZ0im6NPb-6J_aLXXPQ8esEvDxCGAwOPQeR2PDM1dXlWqYStyHhevRabzzibn9yRkkC-NrJUUiPi8EpcPuLHkdjKXRUGc9mag7Z_-96x_4MMTn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>14681145</pqid></control><display><type>article</type><title>Evaluation of the ability of an artificial neural network model to assess the variation of groundwater quality in an area of blackfoot disease in Taiwan</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Kuo, Yi-Ming ; Liu, Chen-Wuing ; Lin, Kao-Hung</creator><creatorcontrib>Kuo, Yi-Ming ; Liu, Chen-Wuing ; Lin, Kao-Hung</creatorcontrib><description>The back-propagation (BP) artificial neural network (ANN) is applied to forecast the variation of the quality of groundwater in the blackfoot disease area in Taiwan. Three types of BP ANN models were established to evaluate their learning performance. Model A included five concentration parameters as input variables for seawater intrusion and three concentration parameters as input variables for arsenic pollutant, respectively, whereas models B and C used only one concentration parameter for each. Furthermore, model C used seasonal data from two seasons to train the ANN, whereas models A and C used only data from one season. The results indicate that model C outperforms models A and B. Model C can describe complex variation of groundwater quality and be used to perform reliable forecasting. Moreover, the number of hidden nodes does not significantly influence the performance of the ANN model in training or testing.</description><identifier>ISSN: 0043-1354</identifier><identifier>EISSN: 1879-2448</identifier><identifier>DOI: 10.1016/j.watres.2003.09.026</identifier><identifier>PMID: 14630112</identifier><identifier>CODEN: WATRAG</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Applied sciences ; Arsenic Poisoning - epidemiology ; Arsenic pollutant ; Artificial neural network ; Back-propagation ; Disease Outbreaks ; Earth sciences ; Earth, ocean, space ; Engineering and environment geology. Geothermics ; Exact sciences and technology ; Forecasting ; Groundwater quality ; Groundwaters ; Humans ; Natural water pollution ; neural networks ; Neural Networks (Computer) ; Peripheral Nervous System Diseases - epidemiology ; Pollution ; Pollution, environment geology ; Reproducibility of Results ; Seasons ; Seawater ; Soil Pollutants - poisoning ; Taiwan ; Water Pollutants - poisoning ; Water Supply ; Water treatment and pollution</subject><ispartof>Water research (Oxford), 2004, Vol.38 (1), p.148-158</ispartof><rights>2003 Elsevier Ltd</rights><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a609t-815fa1fd15e1cc3220aa6e94eeca2be66523cc3194e1b0d21c291b19989d92c83</citedby><cites>FETCH-LOGICAL-a609t-815fa1fd15e1cc3220aa6e94eeca2be66523cc3194e1b0d21c291b19989d92c83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.watres.2003.09.026$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,4024,27923,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15339809$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/14630112$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kuo, Yi-Ming</creatorcontrib><creatorcontrib>Liu, Chen-Wuing</creatorcontrib><creatorcontrib>Lin, Kao-Hung</creatorcontrib><title>Evaluation of the ability of an artificial neural network model to assess the variation of groundwater quality in an area of blackfoot disease in Taiwan</title><title>Water research (Oxford)</title><addtitle>Water Res</addtitle><description>The back-propagation (BP) artificial neural network (ANN) is applied to forecast the variation of the quality of groundwater in the blackfoot disease area in Taiwan. Three types of BP ANN models were established to evaluate their learning performance. Model A included five concentration parameters as input variables for seawater intrusion and three concentration parameters as input variables for arsenic pollutant, respectively, whereas models B and C used only one concentration parameter for each. Furthermore, model C used seasonal data from two seasons to train the ANN, whereas models A and C used only data from one season. The results indicate that model C outperforms models A and B. Model C can describe complex variation of groundwater quality and be used to perform reliable forecasting. Moreover, the number of hidden nodes does not significantly influence the performance of the ANN model in training or testing.</description><subject>Applied sciences</subject><subject>Arsenic Poisoning - epidemiology</subject><subject>Arsenic pollutant</subject><subject>Artificial neural network</subject><subject>Back-propagation</subject><subject>Disease Outbreaks</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Engineering and environment geology. Geothermics</subject><subject>Exact sciences and technology</subject><subject>Forecasting</subject><subject>Groundwater quality</subject><subject>Groundwaters</subject><subject>Humans</subject><subject>Natural water pollution</subject><subject>neural networks</subject><subject>Neural Networks (Computer)</subject><subject>Peripheral Nervous System Diseases - epidemiology</subject><subject>Pollution</subject><subject>Pollution, environment geology</subject><subject>Reproducibility of Results</subject><subject>Seasons</subject><subject>Seawater</subject><subject>Soil Pollutants - poisoning</subject><subject>Taiwan</subject><subject>Water Pollutants - poisoning</subject><subject>Water Supply</subject><subject>Water treatment and pollution</subject><issn>0043-1354</issn><issn>1879-2448</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc9u1DAQhyMEotvCGyDIhd4SPI7jjS9IVVX-SJU40J6tiTMp3mbj1nZ21TfhcXE2K3qD08jjbz6N5pdl74CVwEB-2pR7jJ5CyRmrSqZKxuWLbAXNWhVciOZltmJMVAVUtTjJTkPYMMY4r9Tr7ASErBgAX2W_r3Y4TBitG3PX5_EX5djawcan-Yljjj7a3hqLQz7S5A8l7p2_z7euoyGPLscQKITD7A69_Su7824au7Ql-fxxwoPUjouUcCbaAc1971zMOxsIA83_N2j3OL7JXvU4BHp7rGfZ7Zerm8tvxfWPr98vL64LlEzFooG6R-g7qAmMqThniJKUIDLIW5Ky5lXqQ-pAyzoOhitoQalGdYqbpjrLzhfvg3ePE4WotzYYGgYcyU1Bg4Ra1WL9f1DIBkDUCRQLaLwLwVOvH7zdon_SwPQcnd7oJTo9R6eZ0im6NPb-6J_aLXXPQ8esEvDxCGAwOPQeR2PDM1dXlWqYStyHhevRabzzibn9yRkkC-NrJUUiPi8EpcPuLHkdjKXRUGc9mag7Z_-96x_4MMTn</recordid><startdate>2004</startdate><enddate>2004</enddate><creator>Kuo, Yi-Ming</creator><creator>Liu, Chen-Wuing</creator><creator>Lin, Kao-Hung</creator><general>Elsevier Ltd</general><general>Elsevier Science</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope><scope>7QH</scope><scope>7QO</scope><scope>7TV</scope><scope>7UA</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>L.G</scope><scope>P64</scope></search><sort><creationdate>2004</creationdate><title>Evaluation of the ability of an artificial neural network model to assess the variation of groundwater quality in an area of blackfoot disease in Taiwan</title><author>Kuo, Yi-Ming ; Liu, Chen-Wuing ; Lin, Kao-Hung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a609t-815fa1fd15e1cc3220aa6e94eeca2be66523cc3194e1b0d21c291b19989d92c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Applied sciences</topic><topic>Arsenic Poisoning - epidemiology</topic><topic>Arsenic pollutant</topic><topic>Artificial neural network</topic><topic>Back-propagation</topic><topic>Disease Outbreaks</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Engineering and environment geology. Geothermics</topic><topic>Exact sciences and technology</topic><topic>Forecasting</topic><topic>Groundwater quality</topic><topic>Groundwaters</topic><topic>Humans</topic><topic>Natural water pollution</topic><topic>neural networks</topic><topic>Neural Networks (Computer)</topic><topic>Peripheral Nervous System Diseases - epidemiology</topic><topic>Pollution</topic><topic>Pollution, environment geology</topic><topic>Reproducibility of Results</topic><topic>Seasons</topic><topic>Seawater</topic><topic>Soil Pollutants - poisoning</topic><topic>Taiwan</topic><topic>Water Pollutants - poisoning</topic><topic>Water Supply</topic><topic>Water treatment and pollution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kuo, Yi-Ming</creatorcontrib><creatorcontrib>Liu, Chen-Wuing</creatorcontrib><creatorcontrib>Lin, Kao-Hung</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>Aqualine</collection><collection>Biotechnology Research Abstracts</collection><collection>Pollution Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Water research (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kuo, Yi-Ming</au><au>Liu, Chen-Wuing</au><au>Lin, Kao-Hung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluation of the ability of an artificial neural network model to assess the variation of groundwater quality in an area of blackfoot disease in Taiwan</atitle><jtitle>Water research (Oxford)</jtitle><addtitle>Water Res</addtitle><date>2004</date><risdate>2004</risdate><volume>38</volume><issue>1</issue><spage>148</spage><epage>158</epage><pages>148-158</pages><issn>0043-1354</issn><eissn>1879-2448</eissn><coden>WATRAG</coden><abstract>The back-propagation (BP) artificial neural network (ANN) is applied to forecast the variation of the quality of groundwater in the blackfoot disease area in Taiwan. Three types of BP ANN models were established to evaluate their learning performance. Model A included five concentration parameters as input variables for seawater intrusion and three concentration parameters as input variables for arsenic pollutant, respectively, whereas models B and C used only one concentration parameter for each. Furthermore, model C used seasonal data from two seasons to train the ANN, whereas models A and C used only data from one season. The results indicate that model C outperforms models A and B. Model C can describe complex variation of groundwater quality and be used to perform reliable forecasting. Moreover, the number of hidden nodes does not significantly influence the performance of the ANN model in training or testing.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><pmid>14630112</pmid><doi>10.1016/j.watres.2003.09.026</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0043-1354
ispartof Water research (Oxford), 2004, Vol.38 (1), p.148-158
issn 0043-1354
1879-2448
language eng
recordid cdi_proquest_miscellaneous_16159547
source MEDLINE; ScienceDirect Journals (5 years ago - present)
subjects Applied sciences
Arsenic Poisoning - epidemiology
Arsenic pollutant
Artificial neural network
Back-propagation
Disease Outbreaks
Earth sciences
Earth, ocean, space
Engineering and environment geology. Geothermics
Exact sciences and technology
Forecasting
Groundwater quality
Groundwaters
Humans
Natural water pollution
neural networks
Neural Networks (Computer)
Peripheral Nervous System Diseases - epidemiology
Pollution
Pollution, environment geology
Reproducibility of Results
Seasons
Seawater
Soil Pollutants - poisoning
Taiwan
Water Pollutants - poisoning
Water Supply
Water treatment and pollution
title Evaluation of the ability of an artificial neural network model to assess the variation of groundwater quality in an area of blackfoot disease in Taiwan
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T17%3A48%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluation%20of%20the%20ability%20of%20an%20artificial%20neural%20network%20model%20to%20assess%20the%20variation%20of%20groundwater%20quality%20in%20an%20area%20of%20blackfoot%20disease%20in%20Taiwan&rft.jtitle=Water%20research%20(Oxford)&rft.au=Kuo,%20Yi-Ming&rft.date=2004&rft.volume=38&rft.issue=1&rft.spage=148&rft.epage=158&rft.pages=148-158&rft.issn=0043-1354&rft.eissn=1879-2448&rft.coden=WATRAG&rft_id=info:doi/10.1016/j.watres.2003.09.026&rft_dat=%3Cproquest_cross%3E14681145%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=14681145&rft_id=info:pmid/14630112&rft_els_id=S0043135403005013&rfr_iscdi=true