Rapid Exchange between Atmospheric CO2 and Carbonate Anion Intercalated within Magnesium Rich Layered Double Hydroxide
The carbon cycle, by which carbon atoms circulate between atmosphere, oceans, lithosphere, and the biosphere of Earth, is a current hot research topic. The carbon cycle occurring in the lithosphere (e.g., sedimentary carbonates) is based on weathering and metamorphic events so that its processes are...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2014-10, Vol.6 (20), p.18352-18359 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 18359 |
---|---|
container_issue | 20 |
container_start_page | 18352 |
container_title | ACS applied materials & interfaces |
container_volume | 6 |
creator | Sahoo, Pathik Ishihara, Shinsuke Yamada, Kazuhiko Deguchi, Kenzo Ohki, Shinobu Tansho, Masataka Shimizu, Tadashi Eisaku, Nii Sasai, Ryo Labuta, Jan Ishikawa, Daisuke Hill, Jonathan P Ariga, Katsuhiko Bastakoti, Bishnu Prasad Yamauchi, Yusuke Iyi, Nobuo |
description | The carbon cycle, by which carbon atoms circulate between atmosphere, oceans, lithosphere, and the biosphere of Earth, is a current hot research topic. The carbon cycle occurring in the lithosphere (e.g., sedimentary carbonates) is based on weathering and metamorphic events so that its processes are considered to occur on the geological time scale (i.e., over millions of years). In contrast, we have recently reported that carbonate anions intercalated within a hydrotalcite (Mg0.75Al0.25(OH)2(CO3)0.125·yH2O), a class of a layered double hydroxide (LDH), are dynamically exchanging on time scale of hours with atmospheric CO2 under ambient conditions. (Ishihara et al., J. Am. Chem. Soc. 2013, 135, 18040–18043). The use of 13C-labeling enabled monitoring by infrared spectroscopy of the dynamic exchange between the initially intercalated 13C-labeled carbonate anions and carbonate anions derived from atmospheric CO2. In this article, we report the significant influence of Mg/Al ratio of LDH on the carbonate anion exchange dynamics. Of three LDHs of various Mg/Al ratios of 2, 3, or 4, magnesium-rich LDH (i.e., Mg/Al ratio = 4) underwent extremely rapid exchange of carbonate anions, and most of the initially intercalated carbonate anions were replaced with carbonate anions derived from atmospheric CO2 within 30 min. Detailed investigations by using infrared spectroscopy, scanning electron microscopy, powder X-ray diffraction, elemental analysis, adsorption, thermogravimetric analysis, and solid-state NMR revealed that magnesium rich LDH has chemical and structural features that promote the exchange of carbonate anions. Our results indicate that the unique interactions between LDH and CO2 can be optimized simply by varying the chemical composition of LDH, implying that LDH is a promising material for CO2 storage and/or separation. |
doi_str_mv | 10.1021/am5060405 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1615743246</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1615743246</sourcerecordid><originalsourceid>FETCH-LOGICAL-a307t-320b6c214817b99d7396aa5448dc45027e026b42fd53910fb696258d7dbeded73</originalsourceid><addsrcrecordid>eNo9kVFPwjAUhRujEUQf_AOmLya-oG3XdtsjQRQSDAnR56VdL1CydbPdBP69MyBP9-aeLzcn5yB0T8kzJYy-qFIQSTgRF6hPU86HCRPs8rxz3kM3IWwJkREj4hr1OjkWqYz66GepamvwZJ9vlFsD1tDsABweNWUV6g14m-PxgmHlDB4rryunGsAjZyuHZ64Bn6uiuxi8s83GOvyh1g6CbUu8tPkGz9UBfKe-Vq0uAE8Pxld7a-AWXa1UEeDuNAfo623yOZ4O54v32Xg0H6qIxM2ws6tlzihPaKzT1MRRKpUSnCcm54KwGAiTmrOVEVFKyUrLVDKRmNhoMNDhA_R0_Fv76ruF0GSlDTkUhXJQtSGjkoqYR4zLDn04oa0uwWS1t6Xyh-w_qw54PAIqD9m2ar3rnGeUZH8dZOcOol8T_HW3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1615743246</pqid></control><display><type>article</type><title>Rapid Exchange between Atmospheric CO2 and Carbonate Anion Intercalated within Magnesium Rich Layered Double Hydroxide</title><source>ACS Publications</source><creator>Sahoo, Pathik ; Ishihara, Shinsuke ; Yamada, Kazuhiko ; Deguchi, Kenzo ; Ohki, Shinobu ; Tansho, Masataka ; Shimizu, Tadashi ; Eisaku, Nii ; Sasai, Ryo ; Labuta, Jan ; Ishikawa, Daisuke ; Hill, Jonathan P ; Ariga, Katsuhiko ; Bastakoti, Bishnu Prasad ; Yamauchi, Yusuke ; Iyi, Nobuo</creator><creatorcontrib>Sahoo, Pathik ; Ishihara, Shinsuke ; Yamada, Kazuhiko ; Deguchi, Kenzo ; Ohki, Shinobu ; Tansho, Masataka ; Shimizu, Tadashi ; Eisaku, Nii ; Sasai, Ryo ; Labuta, Jan ; Ishikawa, Daisuke ; Hill, Jonathan P ; Ariga, Katsuhiko ; Bastakoti, Bishnu Prasad ; Yamauchi, Yusuke ; Iyi, Nobuo</creatorcontrib><description>The carbon cycle, by which carbon atoms circulate between atmosphere, oceans, lithosphere, and the biosphere of Earth, is a current hot research topic. The carbon cycle occurring in the lithosphere (e.g., sedimentary carbonates) is based on weathering and metamorphic events so that its processes are considered to occur on the geological time scale (i.e., over millions of years). In contrast, we have recently reported that carbonate anions intercalated within a hydrotalcite (Mg0.75Al0.25(OH)2(CO3)0.125·yH2O), a class of a layered double hydroxide (LDH), are dynamically exchanging on time scale of hours with atmospheric CO2 under ambient conditions. (Ishihara et al., J. Am. Chem. Soc. 2013, 135, 18040–18043). The use of 13C-labeling enabled monitoring by infrared spectroscopy of the dynamic exchange between the initially intercalated 13C-labeled carbonate anions and carbonate anions derived from atmospheric CO2. In this article, we report the significant influence of Mg/Al ratio of LDH on the carbonate anion exchange dynamics. Of three LDHs of various Mg/Al ratios of 2, 3, or 4, magnesium-rich LDH (i.e., Mg/Al ratio = 4) underwent extremely rapid exchange of carbonate anions, and most of the initially intercalated carbonate anions were replaced with carbonate anions derived from atmospheric CO2 within 30 min. Detailed investigations by using infrared spectroscopy, scanning electron microscopy, powder X-ray diffraction, elemental analysis, adsorption, thermogravimetric analysis, and solid-state NMR revealed that magnesium rich LDH has chemical and structural features that promote the exchange of carbonate anions. Our results indicate that the unique interactions between LDH and CO2 can be optimized simply by varying the chemical composition of LDH, implying that LDH is a promising material for CO2 storage and/or separation.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/am5060405</identifier><identifier>PMID: 25275963</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS applied materials & interfaces, 2014-10, Vol.6 (20), p.18352-18359</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/am5060405$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/am5060405$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>315,781,785,27081,27929,27930,56743,56793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25275963$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sahoo, Pathik</creatorcontrib><creatorcontrib>Ishihara, Shinsuke</creatorcontrib><creatorcontrib>Yamada, Kazuhiko</creatorcontrib><creatorcontrib>Deguchi, Kenzo</creatorcontrib><creatorcontrib>Ohki, Shinobu</creatorcontrib><creatorcontrib>Tansho, Masataka</creatorcontrib><creatorcontrib>Shimizu, Tadashi</creatorcontrib><creatorcontrib>Eisaku, Nii</creatorcontrib><creatorcontrib>Sasai, Ryo</creatorcontrib><creatorcontrib>Labuta, Jan</creatorcontrib><creatorcontrib>Ishikawa, Daisuke</creatorcontrib><creatorcontrib>Hill, Jonathan P</creatorcontrib><creatorcontrib>Ariga, Katsuhiko</creatorcontrib><creatorcontrib>Bastakoti, Bishnu Prasad</creatorcontrib><creatorcontrib>Yamauchi, Yusuke</creatorcontrib><creatorcontrib>Iyi, Nobuo</creatorcontrib><title>Rapid Exchange between Atmospheric CO2 and Carbonate Anion Intercalated within Magnesium Rich Layered Double Hydroxide</title><title>ACS applied materials & interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>The carbon cycle, by which carbon atoms circulate between atmosphere, oceans, lithosphere, and the biosphere of Earth, is a current hot research topic. The carbon cycle occurring in the lithosphere (e.g., sedimentary carbonates) is based on weathering and metamorphic events so that its processes are considered to occur on the geological time scale (i.e., over millions of years). In contrast, we have recently reported that carbonate anions intercalated within a hydrotalcite (Mg0.75Al0.25(OH)2(CO3)0.125·yH2O), a class of a layered double hydroxide (LDH), are dynamically exchanging on time scale of hours with atmospheric CO2 under ambient conditions. (Ishihara et al., J. Am. Chem. Soc. 2013, 135, 18040–18043). The use of 13C-labeling enabled monitoring by infrared spectroscopy of the dynamic exchange between the initially intercalated 13C-labeled carbonate anions and carbonate anions derived from atmospheric CO2. In this article, we report the significant influence of Mg/Al ratio of LDH on the carbonate anion exchange dynamics. Of three LDHs of various Mg/Al ratios of 2, 3, or 4, magnesium-rich LDH (i.e., Mg/Al ratio = 4) underwent extremely rapid exchange of carbonate anions, and most of the initially intercalated carbonate anions were replaced with carbonate anions derived from atmospheric CO2 within 30 min. Detailed investigations by using infrared spectroscopy, scanning electron microscopy, powder X-ray diffraction, elemental analysis, adsorption, thermogravimetric analysis, and solid-state NMR revealed that magnesium rich LDH has chemical and structural features that promote the exchange of carbonate anions. Our results indicate that the unique interactions between LDH and CO2 can be optimized simply by varying the chemical composition of LDH, implying that LDH is a promising material for CO2 storage and/or separation.</description><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNo9kVFPwjAUhRujEUQf_AOmLya-oG3XdtsjQRQSDAnR56VdL1CydbPdBP69MyBP9-aeLzcn5yB0T8kzJYy-qFIQSTgRF6hPU86HCRPs8rxz3kM3IWwJkREj4hr1OjkWqYz66GepamvwZJ9vlFsD1tDsABweNWUV6g14m-PxgmHlDB4rryunGsAjZyuHZ64Bn6uiuxi8s83GOvyh1g6CbUu8tPkGz9UBfKe-Vq0uAE8Pxld7a-AWXa1UEeDuNAfo623yOZ4O54v32Xg0H6qIxM2ws6tlzihPaKzT1MRRKpUSnCcm54KwGAiTmrOVEVFKyUrLVDKRmNhoMNDhA_R0_Fv76ruF0GSlDTkUhXJQtSGjkoqYR4zLDn04oa0uwWS1t6Xyh-w_qw54PAIqD9m2ar3rnGeUZH8dZOcOol8T_HW3</recordid><startdate>20141022</startdate><enddate>20141022</enddate><creator>Sahoo, Pathik</creator><creator>Ishihara, Shinsuke</creator><creator>Yamada, Kazuhiko</creator><creator>Deguchi, Kenzo</creator><creator>Ohki, Shinobu</creator><creator>Tansho, Masataka</creator><creator>Shimizu, Tadashi</creator><creator>Eisaku, Nii</creator><creator>Sasai, Ryo</creator><creator>Labuta, Jan</creator><creator>Ishikawa, Daisuke</creator><creator>Hill, Jonathan P</creator><creator>Ariga, Katsuhiko</creator><creator>Bastakoti, Bishnu Prasad</creator><creator>Yamauchi, Yusuke</creator><creator>Iyi, Nobuo</creator><general>American Chemical Society</general><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>20141022</creationdate><title>Rapid Exchange between Atmospheric CO2 and Carbonate Anion Intercalated within Magnesium Rich Layered Double Hydroxide</title><author>Sahoo, Pathik ; Ishihara, Shinsuke ; Yamada, Kazuhiko ; Deguchi, Kenzo ; Ohki, Shinobu ; Tansho, Masataka ; Shimizu, Tadashi ; Eisaku, Nii ; Sasai, Ryo ; Labuta, Jan ; Ishikawa, Daisuke ; Hill, Jonathan P ; Ariga, Katsuhiko ; Bastakoti, Bishnu Prasad ; Yamauchi, Yusuke ; Iyi, Nobuo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a307t-320b6c214817b99d7396aa5448dc45027e026b42fd53910fb696258d7dbeded73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sahoo, Pathik</creatorcontrib><creatorcontrib>Ishihara, Shinsuke</creatorcontrib><creatorcontrib>Yamada, Kazuhiko</creatorcontrib><creatorcontrib>Deguchi, Kenzo</creatorcontrib><creatorcontrib>Ohki, Shinobu</creatorcontrib><creatorcontrib>Tansho, Masataka</creatorcontrib><creatorcontrib>Shimizu, Tadashi</creatorcontrib><creatorcontrib>Eisaku, Nii</creatorcontrib><creatorcontrib>Sasai, Ryo</creatorcontrib><creatorcontrib>Labuta, Jan</creatorcontrib><creatorcontrib>Ishikawa, Daisuke</creatorcontrib><creatorcontrib>Hill, Jonathan P</creatorcontrib><creatorcontrib>Ariga, Katsuhiko</creatorcontrib><creatorcontrib>Bastakoti, Bishnu Prasad</creatorcontrib><creatorcontrib>Yamauchi, Yusuke</creatorcontrib><creatorcontrib>Iyi, Nobuo</creatorcontrib><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials & interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sahoo, Pathik</au><au>Ishihara, Shinsuke</au><au>Yamada, Kazuhiko</au><au>Deguchi, Kenzo</au><au>Ohki, Shinobu</au><au>Tansho, Masataka</au><au>Shimizu, Tadashi</au><au>Eisaku, Nii</au><au>Sasai, Ryo</au><au>Labuta, Jan</au><au>Ishikawa, Daisuke</au><au>Hill, Jonathan P</au><au>Ariga, Katsuhiko</au><au>Bastakoti, Bishnu Prasad</au><au>Yamauchi, Yusuke</au><au>Iyi, Nobuo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rapid Exchange between Atmospheric CO2 and Carbonate Anion Intercalated within Magnesium Rich Layered Double Hydroxide</atitle><jtitle>ACS applied materials & interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2014-10-22</date><risdate>2014</risdate><volume>6</volume><issue>20</issue><spage>18352</spage><epage>18359</epage><pages>18352-18359</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>The carbon cycle, by which carbon atoms circulate between atmosphere, oceans, lithosphere, and the biosphere of Earth, is a current hot research topic. The carbon cycle occurring in the lithosphere (e.g., sedimentary carbonates) is based on weathering and metamorphic events so that its processes are considered to occur on the geological time scale (i.e., over millions of years). In contrast, we have recently reported that carbonate anions intercalated within a hydrotalcite (Mg0.75Al0.25(OH)2(CO3)0.125·yH2O), a class of a layered double hydroxide (LDH), are dynamically exchanging on time scale of hours with atmospheric CO2 under ambient conditions. (Ishihara et al., J. Am. Chem. Soc. 2013, 135, 18040–18043). The use of 13C-labeling enabled monitoring by infrared spectroscopy of the dynamic exchange between the initially intercalated 13C-labeled carbonate anions and carbonate anions derived from atmospheric CO2. In this article, we report the significant influence of Mg/Al ratio of LDH on the carbonate anion exchange dynamics. Of three LDHs of various Mg/Al ratios of 2, 3, or 4, magnesium-rich LDH (i.e., Mg/Al ratio = 4) underwent extremely rapid exchange of carbonate anions, and most of the initially intercalated carbonate anions were replaced with carbonate anions derived from atmospheric CO2 within 30 min. Detailed investigations by using infrared spectroscopy, scanning electron microscopy, powder X-ray diffraction, elemental analysis, adsorption, thermogravimetric analysis, and solid-state NMR revealed that magnesium rich LDH has chemical and structural features that promote the exchange of carbonate anions. Our results indicate that the unique interactions between LDH and CO2 can be optimized simply by varying the chemical composition of LDH, implying that LDH is a promising material for CO2 storage and/or separation.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>25275963</pmid><doi>10.1021/am5060405</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1944-8244 |
ispartof | ACS applied materials & interfaces, 2014-10, Vol.6 (20), p.18352-18359 |
issn | 1944-8244 1944-8252 |
language | eng |
recordid | cdi_proquest_miscellaneous_1615743246 |
source | ACS Publications |
title | Rapid Exchange between Atmospheric CO2 and Carbonate Anion Intercalated within Magnesium Rich Layered Double Hydroxide |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T06%3A44%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rapid%20Exchange%20between%20Atmospheric%20CO2%20and%20Carbonate%20Anion%20Intercalated%20within%20Magnesium%20Rich%20Layered%20Double%20Hydroxide&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Sahoo,%20Pathik&rft.date=2014-10-22&rft.volume=6&rft.issue=20&rft.spage=18352&rft.epage=18359&rft.pages=18352-18359&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/am5060405&rft_dat=%3Cproquest_pubme%3E1615743246%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1615743246&rft_id=info:pmid/25275963&rfr_iscdi=true |