Rapid Exchange between Atmospheric CO2 and Carbonate Anion Intercalated within Magnesium Rich Layered Double Hydroxide

The carbon cycle, by which carbon atoms circulate between atmosphere, oceans, lithosphere, and the biosphere of Earth, is a current hot research topic. The carbon cycle occurring in the lithosphere (e.g., sedimentary carbonates) is based on weathering and metamorphic events so that its processes are...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2014-10, Vol.6 (20), p.18352-18359
Hauptverfasser: Sahoo, Pathik, Ishihara, Shinsuke, Yamada, Kazuhiko, Deguchi, Kenzo, Ohki, Shinobu, Tansho, Masataka, Shimizu, Tadashi, Eisaku, Nii, Sasai, Ryo, Labuta, Jan, Ishikawa, Daisuke, Hill, Jonathan P, Ariga, Katsuhiko, Bastakoti, Bishnu Prasad, Yamauchi, Yusuke, Iyi, Nobuo
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 18359
container_issue 20
container_start_page 18352
container_title ACS applied materials & interfaces
container_volume 6
creator Sahoo, Pathik
Ishihara, Shinsuke
Yamada, Kazuhiko
Deguchi, Kenzo
Ohki, Shinobu
Tansho, Masataka
Shimizu, Tadashi
Eisaku, Nii
Sasai, Ryo
Labuta, Jan
Ishikawa, Daisuke
Hill, Jonathan P
Ariga, Katsuhiko
Bastakoti, Bishnu Prasad
Yamauchi, Yusuke
Iyi, Nobuo
description The carbon cycle, by which carbon atoms circulate between atmosphere, oceans, lithosphere, and the biosphere of Earth, is a current hot research topic. The carbon cycle occurring in the lithosphere (e.g., sedimentary carbonates) is based on weathering and metamorphic events so that its processes are considered to occur on the geological time scale (i.e., over millions of years). In contrast, we have recently reported that carbonate anions intercalated within a hydrotalcite (Mg0.75Al0.25(OH)2(CO3)0.125·yH2O), a class of a layered double hydroxide (LDH), are dynamically exchanging on time scale of hours with atmospheric CO2 under ambient conditions. (Ishihara et al., J. Am. Chem. Soc. 2013, 135, 18040–18043). The use of 13C-labeling enabled monitoring by infrared spectroscopy of the dynamic exchange between the initially intercalated 13C-labeled carbonate anions and carbonate anions derived from atmospheric CO2. In this article, we report the significant influence of Mg/Al ratio of LDH on the carbonate anion exchange dynamics. Of three LDHs of various Mg/Al ratios of 2, 3, or 4, magnesium-rich LDH (i.e., Mg/Al ratio = 4) underwent extremely rapid exchange of carbonate anions, and most of the initially intercalated carbonate anions were replaced with carbonate anions derived from atmospheric CO2 within 30 min. Detailed investigations by using infrared spectroscopy, scanning electron microscopy, powder X-ray diffraction, elemental analysis, adsorption, thermogravimetric analysis, and solid-state NMR revealed that magnesium rich LDH has chemical and structural features that promote the exchange of carbonate anions. Our results indicate that the unique interactions between LDH and CO2 can be optimized simply by varying the chemical composition of LDH, implying that LDH is a promising material for CO2 storage and/or separation.
doi_str_mv 10.1021/am5060405
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1615743246</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1615743246</sourcerecordid><originalsourceid>FETCH-LOGICAL-a307t-320b6c214817b99d7396aa5448dc45027e026b42fd53910fb696258d7dbeded73</originalsourceid><addsrcrecordid>eNo9kVFPwjAUhRujEUQf_AOmLya-oG3XdtsjQRQSDAnR56VdL1CydbPdBP69MyBP9-aeLzcn5yB0T8kzJYy-qFIQSTgRF6hPU86HCRPs8rxz3kM3IWwJkREj4hr1OjkWqYz66GepamvwZJ9vlFsD1tDsABweNWUV6g14m-PxgmHlDB4rryunGsAjZyuHZ64Bn6uiuxi8s83GOvyh1g6CbUu8tPkGz9UBfKe-Vq0uAE8Pxld7a-AWXa1UEeDuNAfo623yOZ4O54v32Xg0H6qIxM2ws6tlzihPaKzT1MRRKpUSnCcm54KwGAiTmrOVEVFKyUrLVDKRmNhoMNDhA_R0_Fv76ruF0GSlDTkUhXJQtSGjkoqYR4zLDn04oa0uwWS1t6Xyh-w_qw54PAIqD9m2ar3rnGeUZH8dZOcOol8T_HW3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1615743246</pqid></control><display><type>article</type><title>Rapid Exchange between Atmospheric CO2 and Carbonate Anion Intercalated within Magnesium Rich Layered Double Hydroxide</title><source>ACS Publications</source><creator>Sahoo, Pathik ; Ishihara, Shinsuke ; Yamada, Kazuhiko ; Deguchi, Kenzo ; Ohki, Shinobu ; Tansho, Masataka ; Shimizu, Tadashi ; Eisaku, Nii ; Sasai, Ryo ; Labuta, Jan ; Ishikawa, Daisuke ; Hill, Jonathan P ; Ariga, Katsuhiko ; Bastakoti, Bishnu Prasad ; Yamauchi, Yusuke ; Iyi, Nobuo</creator><creatorcontrib>Sahoo, Pathik ; Ishihara, Shinsuke ; Yamada, Kazuhiko ; Deguchi, Kenzo ; Ohki, Shinobu ; Tansho, Masataka ; Shimizu, Tadashi ; Eisaku, Nii ; Sasai, Ryo ; Labuta, Jan ; Ishikawa, Daisuke ; Hill, Jonathan P ; Ariga, Katsuhiko ; Bastakoti, Bishnu Prasad ; Yamauchi, Yusuke ; Iyi, Nobuo</creatorcontrib><description>The carbon cycle, by which carbon atoms circulate between atmosphere, oceans, lithosphere, and the biosphere of Earth, is a current hot research topic. The carbon cycle occurring in the lithosphere (e.g., sedimentary carbonates) is based on weathering and metamorphic events so that its processes are considered to occur on the geological time scale (i.e., over millions of years). In contrast, we have recently reported that carbonate anions intercalated within a hydrotalcite (Mg0.75Al0.25(OH)2(CO3)0.125·yH2O), a class of a layered double hydroxide (LDH), are dynamically exchanging on time scale of hours with atmospheric CO2 under ambient conditions. (Ishihara et al., J. Am. Chem. Soc. 2013, 135, 18040–18043). The use of 13C-labeling enabled monitoring by infrared spectroscopy of the dynamic exchange between the initially intercalated 13C-labeled carbonate anions and carbonate anions derived from atmospheric CO2. In this article, we report the significant influence of Mg/Al ratio of LDH on the carbonate anion exchange dynamics. Of three LDHs of various Mg/Al ratios of 2, 3, or 4, magnesium-rich LDH (i.e., Mg/Al ratio = 4) underwent extremely rapid exchange of carbonate anions, and most of the initially intercalated carbonate anions were replaced with carbonate anions derived from atmospheric CO2 within 30 min. Detailed investigations by using infrared spectroscopy, scanning electron microscopy, powder X-ray diffraction, elemental analysis, adsorption, thermogravimetric analysis, and solid-state NMR revealed that magnesium rich LDH has chemical and structural features that promote the exchange of carbonate anions. Our results indicate that the unique interactions between LDH and CO2 can be optimized simply by varying the chemical composition of LDH, implying that LDH is a promising material for CO2 storage and/or separation.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/am5060405</identifier><identifier>PMID: 25275963</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS applied materials &amp; interfaces, 2014-10, Vol.6 (20), p.18352-18359</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/am5060405$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/am5060405$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>315,781,785,27081,27929,27930,56743,56793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25275963$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sahoo, Pathik</creatorcontrib><creatorcontrib>Ishihara, Shinsuke</creatorcontrib><creatorcontrib>Yamada, Kazuhiko</creatorcontrib><creatorcontrib>Deguchi, Kenzo</creatorcontrib><creatorcontrib>Ohki, Shinobu</creatorcontrib><creatorcontrib>Tansho, Masataka</creatorcontrib><creatorcontrib>Shimizu, Tadashi</creatorcontrib><creatorcontrib>Eisaku, Nii</creatorcontrib><creatorcontrib>Sasai, Ryo</creatorcontrib><creatorcontrib>Labuta, Jan</creatorcontrib><creatorcontrib>Ishikawa, Daisuke</creatorcontrib><creatorcontrib>Hill, Jonathan P</creatorcontrib><creatorcontrib>Ariga, Katsuhiko</creatorcontrib><creatorcontrib>Bastakoti, Bishnu Prasad</creatorcontrib><creatorcontrib>Yamauchi, Yusuke</creatorcontrib><creatorcontrib>Iyi, Nobuo</creatorcontrib><title>Rapid Exchange between Atmospheric CO2 and Carbonate Anion Intercalated within Magnesium Rich Layered Double Hydroxide</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>The carbon cycle, by which carbon atoms circulate between atmosphere, oceans, lithosphere, and the biosphere of Earth, is a current hot research topic. The carbon cycle occurring in the lithosphere (e.g., sedimentary carbonates) is based on weathering and metamorphic events so that its processes are considered to occur on the geological time scale (i.e., over millions of years). In contrast, we have recently reported that carbonate anions intercalated within a hydrotalcite (Mg0.75Al0.25(OH)2(CO3)0.125·yH2O), a class of a layered double hydroxide (LDH), are dynamically exchanging on time scale of hours with atmospheric CO2 under ambient conditions. (Ishihara et al., J. Am. Chem. Soc. 2013, 135, 18040–18043). The use of 13C-labeling enabled monitoring by infrared spectroscopy of the dynamic exchange between the initially intercalated 13C-labeled carbonate anions and carbonate anions derived from atmospheric CO2. In this article, we report the significant influence of Mg/Al ratio of LDH on the carbonate anion exchange dynamics. Of three LDHs of various Mg/Al ratios of 2, 3, or 4, magnesium-rich LDH (i.e., Mg/Al ratio = 4) underwent extremely rapid exchange of carbonate anions, and most of the initially intercalated carbonate anions were replaced with carbonate anions derived from atmospheric CO2 within 30 min. Detailed investigations by using infrared spectroscopy, scanning electron microscopy, powder X-ray diffraction, elemental analysis, adsorption, thermogravimetric analysis, and solid-state NMR revealed that magnesium rich LDH has chemical and structural features that promote the exchange of carbonate anions. Our results indicate that the unique interactions between LDH and CO2 can be optimized simply by varying the chemical composition of LDH, implying that LDH is a promising material for CO2 storage and/or separation.</description><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNo9kVFPwjAUhRujEUQf_AOmLya-oG3XdtsjQRQSDAnR56VdL1CydbPdBP69MyBP9-aeLzcn5yB0T8kzJYy-qFIQSTgRF6hPU86HCRPs8rxz3kM3IWwJkREj4hr1OjkWqYz66GepamvwZJ9vlFsD1tDsABweNWUV6g14m-PxgmHlDB4rryunGsAjZyuHZ64Bn6uiuxi8s83GOvyh1g6CbUu8tPkGz9UBfKe-Vq0uAE8Pxld7a-AWXa1UEeDuNAfo623yOZ4O54v32Xg0H6qIxM2ws6tlzihPaKzT1MRRKpUSnCcm54KwGAiTmrOVEVFKyUrLVDKRmNhoMNDhA_R0_Fv76ruF0GSlDTkUhXJQtSGjkoqYR4zLDn04oa0uwWS1t6Xyh-w_qw54PAIqD9m2ar3rnGeUZH8dZOcOol8T_HW3</recordid><startdate>20141022</startdate><enddate>20141022</enddate><creator>Sahoo, Pathik</creator><creator>Ishihara, Shinsuke</creator><creator>Yamada, Kazuhiko</creator><creator>Deguchi, Kenzo</creator><creator>Ohki, Shinobu</creator><creator>Tansho, Masataka</creator><creator>Shimizu, Tadashi</creator><creator>Eisaku, Nii</creator><creator>Sasai, Ryo</creator><creator>Labuta, Jan</creator><creator>Ishikawa, Daisuke</creator><creator>Hill, Jonathan P</creator><creator>Ariga, Katsuhiko</creator><creator>Bastakoti, Bishnu Prasad</creator><creator>Yamauchi, Yusuke</creator><creator>Iyi, Nobuo</creator><general>American Chemical Society</general><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>20141022</creationdate><title>Rapid Exchange between Atmospheric CO2 and Carbonate Anion Intercalated within Magnesium Rich Layered Double Hydroxide</title><author>Sahoo, Pathik ; Ishihara, Shinsuke ; Yamada, Kazuhiko ; Deguchi, Kenzo ; Ohki, Shinobu ; Tansho, Masataka ; Shimizu, Tadashi ; Eisaku, Nii ; Sasai, Ryo ; Labuta, Jan ; Ishikawa, Daisuke ; Hill, Jonathan P ; Ariga, Katsuhiko ; Bastakoti, Bishnu Prasad ; Yamauchi, Yusuke ; Iyi, Nobuo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a307t-320b6c214817b99d7396aa5448dc45027e026b42fd53910fb696258d7dbeded73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sahoo, Pathik</creatorcontrib><creatorcontrib>Ishihara, Shinsuke</creatorcontrib><creatorcontrib>Yamada, Kazuhiko</creatorcontrib><creatorcontrib>Deguchi, Kenzo</creatorcontrib><creatorcontrib>Ohki, Shinobu</creatorcontrib><creatorcontrib>Tansho, Masataka</creatorcontrib><creatorcontrib>Shimizu, Tadashi</creatorcontrib><creatorcontrib>Eisaku, Nii</creatorcontrib><creatorcontrib>Sasai, Ryo</creatorcontrib><creatorcontrib>Labuta, Jan</creatorcontrib><creatorcontrib>Ishikawa, Daisuke</creatorcontrib><creatorcontrib>Hill, Jonathan P</creatorcontrib><creatorcontrib>Ariga, Katsuhiko</creatorcontrib><creatorcontrib>Bastakoti, Bishnu Prasad</creatorcontrib><creatorcontrib>Yamauchi, Yusuke</creatorcontrib><creatorcontrib>Iyi, Nobuo</creatorcontrib><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sahoo, Pathik</au><au>Ishihara, Shinsuke</au><au>Yamada, Kazuhiko</au><au>Deguchi, Kenzo</au><au>Ohki, Shinobu</au><au>Tansho, Masataka</au><au>Shimizu, Tadashi</au><au>Eisaku, Nii</au><au>Sasai, Ryo</au><au>Labuta, Jan</au><au>Ishikawa, Daisuke</au><au>Hill, Jonathan P</au><au>Ariga, Katsuhiko</au><au>Bastakoti, Bishnu Prasad</au><au>Yamauchi, Yusuke</au><au>Iyi, Nobuo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rapid Exchange between Atmospheric CO2 and Carbonate Anion Intercalated within Magnesium Rich Layered Double Hydroxide</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2014-10-22</date><risdate>2014</risdate><volume>6</volume><issue>20</issue><spage>18352</spage><epage>18359</epage><pages>18352-18359</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>The carbon cycle, by which carbon atoms circulate between atmosphere, oceans, lithosphere, and the biosphere of Earth, is a current hot research topic. The carbon cycle occurring in the lithosphere (e.g., sedimentary carbonates) is based on weathering and metamorphic events so that its processes are considered to occur on the geological time scale (i.e., over millions of years). In contrast, we have recently reported that carbonate anions intercalated within a hydrotalcite (Mg0.75Al0.25(OH)2(CO3)0.125·yH2O), a class of a layered double hydroxide (LDH), are dynamically exchanging on time scale of hours with atmospheric CO2 under ambient conditions. (Ishihara et al., J. Am. Chem. Soc. 2013, 135, 18040–18043). The use of 13C-labeling enabled monitoring by infrared spectroscopy of the dynamic exchange between the initially intercalated 13C-labeled carbonate anions and carbonate anions derived from atmospheric CO2. In this article, we report the significant influence of Mg/Al ratio of LDH on the carbonate anion exchange dynamics. Of three LDHs of various Mg/Al ratios of 2, 3, or 4, magnesium-rich LDH (i.e., Mg/Al ratio = 4) underwent extremely rapid exchange of carbonate anions, and most of the initially intercalated carbonate anions were replaced with carbonate anions derived from atmospheric CO2 within 30 min. Detailed investigations by using infrared spectroscopy, scanning electron microscopy, powder X-ray diffraction, elemental analysis, adsorption, thermogravimetric analysis, and solid-state NMR revealed that magnesium rich LDH has chemical and structural features that promote the exchange of carbonate anions. Our results indicate that the unique interactions between LDH and CO2 can be optimized simply by varying the chemical composition of LDH, implying that LDH is a promising material for CO2 storage and/or separation.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>25275963</pmid><doi>10.1021/am5060405</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2014-10, Vol.6 (20), p.18352-18359
issn 1944-8244
1944-8252
language eng
recordid cdi_proquest_miscellaneous_1615743246
source ACS Publications
title Rapid Exchange between Atmospheric CO2 and Carbonate Anion Intercalated within Magnesium Rich Layered Double Hydroxide
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T06%3A44%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rapid%20Exchange%20between%20Atmospheric%20CO2%20and%20Carbonate%20Anion%20Intercalated%20within%20Magnesium%20Rich%20Layered%20Double%20Hydroxide&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Sahoo,%20Pathik&rft.date=2014-10-22&rft.volume=6&rft.issue=20&rft.spage=18352&rft.epage=18359&rft.pages=18352-18359&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/am5060405&rft_dat=%3Cproquest_pubme%3E1615743246%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1615743246&rft_id=info:pmid/25275963&rfr_iscdi=true