Oxidation of Pharmaceuticals during Ozonation and Advanced Oxidation Processes

This study investigates the oxidation of pharmaceuticals during conventional ozonation and advanced oxidation processes (AOPs) applied in drinking water treatment. In a first step, second-order rate constants for the reactions of selected pharmaceuticals with ozone (k O 3 ) and OH radicals (k OH) we...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science & technology 2003-03, Vol.37 (5), p.1016-1024
Hauptverfasser: Huber, Marc M, Canonica, Silvio, Park, Gun-Young, von Gunten, Urs
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1024
container_issue 5
container_start_page 1016
container_title Environmental science & technology
container_volume 37
creator Huber, Marc M
Canonica, Silvio
Park, Gun-Young
von Gunten, Urs
description This study investigates the oxidation of pharmaceuticals during conventional ozonation and advanced oxidation processes (AOPs) applied in drinking water treatment. In a first step, second-order rate constants for the reactions of selected pharmaceuticals with ozone (k O 3 ) and OH radicals (k OH) were determined in bench-scale experiments (in brackets apparent k O 3 at pH 7 and T = 20 °C):  bezafibrate (590 ± 50 M-1 s-1), carbamazepine (∼3 × 105 M-1 s-1), diazepam (0.75 ± 0.15 M-1 s-1), diclofenac (∼1 × 106 M-1 s-1), 17α-ethinylestradiol (∼3 × 106 M-1 s-1), ibuprofen (9.6 ± 1.0 M-1 s-1), iopromide (5 × 104 M-1 s-1, indicating that these compounds are completely transformed during ozonation processes. Values for k OH ranged from 3.3 to 9.8 × 109 M-1 s-1. Compared to other important micropollutants such as MTBE and atrazine, the selected pharmaceuticals reacted about two to three times faster with OH radicals. In the second part of the study, oxidation kinetics of the selected pharmaceuticals were investigated in ozonation experiments performed in different natural waters. It could be shown that the second-order rate constants determined in pure aqueous solution could be applied to predict the behavior of pharmaceuticals dissolved in natural waters. Overall it can be concluded that ozonation and AOPs are promising processes for an efficient removal of pharmaceuticals in drinking waters.
doi_str_mv 10.1021/es025896h
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_16154188</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>16154188</sourcerecordid><originalsourceid>FETCH-LOGICAL-a571t-5686f805e2d9b24b4bf3dfd02a78eb2e8812a1283592819ab075b4a6b144b1713</originalsourceid><addsrcrecordid>eNqF0c9P2zAUB3BrYoIOOPAPoAgJJA7Z_Pwr9rFCAya6tagd4mbZsbMG2qSzkwn465eqVSONw04-vM978vs-hE4AfwZM4IuPmHCpxPwDGgAnOOWSwx4aYAw0VVQ8HqBPMT5hjAnFch8dABFCKMoH6Mf4pXSmKesqqYtkMjdhaXLfNmVuFjFxbSirX8n4ra42xlQuGbo_psq9S_rWSahzH6OPR-hj0TX64-17iH5ef51d3aaj8c23q-EoNTyDJuVCikJi7olTljDLbEFd4TAxmfSWeCmBGCCSckUkKGNxxi0zwgJjFjKgh-hiM3cV6t-tj41eljH3i4WpfN1GDQI4Ayn_D5lgGSNrePYPfKrbUHVL6C40IAqrrEOXG5SHOsbgC70K5dKEVw1Yr0-hd6fo7Ol2YGuX3vVym30HzrfAxC7tInSplrF3TAAout413bgyNv5lVzfhWYuMZlzPJlM9Vez76P5B6Lt-rsljv8T7D_4FlxOqbA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>230129097</pqid></control><display><type>article</type><title>Oxidation of Pharmaceuticals during Ozonation and Advanced Oxidation Processes</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Huber, Marc M ; Canonica, Silvio ; Park, Gun-Young ; von Gunten, Urs</creator><creatorcontrib>Huber, Marc M ; Canonica, Silvio ; Park, Gun-Young ; von Gunten, Urs</creatorcontrib><description>This study investigates the oxidation of pharmaceuticals during conventional ozonation and advanced oxidation processes (AOPs) applied in drinking water treatment. In a first step, second-order rate constants for the reactions of selected pharmaceuticals with ozone (k O 3 ) and OH radicals (k OH) were determined in bench-scale experiments (in brackets apparent k O 3 at pH 7 and T = 20 °C):  bezafibrate (590 ± 50 M-1 s-1), carbamazepine (∼3 × 105 M-1 s-1), diazepam (0.75 ± 0.15 M-1 s-1), diclofenac (∼1 × 106 M-1 s-1), 17α-ethinylestradiol (∼3 × 106 M-1 s-1), ibuprofen (9.6 ± 1.0 M-1 s-1), iopromide (&lt;0.8 M-1 s-1), sulfamethoxazole (∼2.5 × 106 M-1 s-1), and roxithromycin (∼7 × 104 M-1 s-1). For five of the pharmaceuticals the apparent k O 3 at pH 7 was &gt;5 × 104 M-1 s-1, indicating that these compounds are completely transformed during ozonation processes. Values for k OH ranged from 3.3 to 9.8 × 109 M-1 s-1. Compared to other important micropollutants such as MTBE and atrazine, the selected pharmaceuticals reacted about two to three times faster with OH radicals. In the second part of the study, oxidation kinetics of the selected pharmaceuticals were investigated in ozonation experiments performed in different natural waters. It could be shown that the second-order rate constants determined in pure aqueous solution could be applied to predict the behavior of pharmaceuticals dissolved in natural waters. Overall it can be concluded that ozonation and AOPs are promising processes for an efficient removal of pharmaceuticals in drinking waters.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/es025896h</identifier><identifier>PMID: 12666935</identifier><identifier>CODEN: ESTHAG</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Applied sciences ; Drinking water ; Drinking water and swimming-pool water. Desalination ; Environmental cleanup ; Exact sciences and technology ; Hydroxyl Radical - chemistry ; Oxidants - chemistry ; Oxidants, Photochemical - chemistry ; Oxidation ; Oxidation-Reduction ; Ozone ; Ozone - chemistry ; Pharmaceutical Preparations ; Pharmaceuticals ; Pollution ; Water Pollutants ; Water pollution ; Water Purification - methods ; Water treatment and pollution</subject><ispartof>Environmental science &amp; technology, 2003-03, Vol.37 (5), p.1016-1024</ispartof><rights>Copyright © 2003 American Chemical Society</rights><rights>2003 INIST-CNRS</rights><rights>Copyright American Chemical Society Mar 1, 2003</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a571t-5686f805e2d9b24b4bf3dfd02a78eb2e8812a1283592819ab075b4a6b144b1713</citedby><cites>FETCH-LOGICAL-a571t-5686f805e2d9b24b4bf3dfd02a78eb2e8812a1283592819ab075b4a6b144b1713</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/es025896h$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/es025896h$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=14611931$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12666935$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Huber, Marc M</creatorcontrib><creatorcontrib>Canonica, Silvio</creatorcontrib><creatorcontrib>Park, Gun-Young</creatorcontrib><creatorcontrib>von Gunten, Urs</creatorcontrib><title>Oxidation of Pharmaceuticals during Ozonation and Advanced Oxidation Processes</title><title>Environmental science &amp; technology</title><addtitle>Environ. Sci. Technol</addtitle><description>This study investigates the oxidation of pharmaceuticals during conventional ozonation and advanced oxidation processes (AOPs) applied in drinking water treatment. In a first step, second-order rate constants for the reactions of selected pharmaceuticals with ozone (k O 3 ) and OH radicals (k OH) were determined in bench-scale experiments (in brackets apparent k O 3 at pH 7 and T = 20 °C):  bezafibrate (590 ± 50 M-1 s-1), carbamazepine (∼3 × 105 M-1 s-1), diazepam (0.75 ± 0.15 M-1 s-1), diclofenac (∼1 × 106 M-1 s-1), 17α-ethinylestradiol (∼3 × 106 M-1 s-1), ibuprofen (9.6 ± 1.0 M-1 s-1), iopromide (&lt;0.8 M-1 s-1), sulfamethoxazole (∼2.5 × 106 M-1 s-1), and roxithromycin (∼7 × 104 M-1 s-1). For five of the pharmaceuticals the apparent k O 3 at pH 7 was &gt;5 × 104 M-1 s-1, indicating that these compounds are completely transformed during ozonation processes. Values for k OH ranged from 3.3 to 9.8 × 109 M-1 s-1. Compared to other important micropollutants such as MTBE and atrazine, the selected pharmaceuticals reacted about two to three times faster with OH radicals. In the second part of the study, oxidation kinetics of the selected pharmaceuticals were investigated in ozonation experiments performed in different natural waters. It could be shown that the second-order rate constants determined in pure aqueous solution could be applied to predict the behavior of pharmaceuticals dissolved in natural waters. Overall it can be concluded that ozonation and AOPs are promising processes for an efficient removal of pharmaceuticals in drinking waters.</description><subject>Applied sciences</subject><subject>Drinking water</subject><subject>Drinking water and swimming-pool water. Desalination</subject><subject>Environmental cleanup</subject><subject>Exact sciences and technology</subject><subject>Hydroxyl Radical - chemistry</subject><subject>Oxidants - chemistry</subject><subject>Oxidants, Photochemical - chemistry</subject><subject>Oxidation</subject><subject>Oxidation-Reduction</subject><subject>Ozone</subject><subject>Ozone - chemistry</subject><subject>Pharmaceutical Preparations</subject><subject>Pharmaceuticals</subject><subject>Pollution</subject><subject>Water Pollutants</subject><subject>Water pollution</subject><subject>Water Purification - methods</subject><subject>Water treatment and pollution</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0c9P2zAUB3BrYoIOOPAPoAgJJA7Z_Pwr9rFCAya6tagd4mbZsbMG2qSzkwn465eqVSONw04-vM978vs-hE4AfwZM4IuPmHCpxPwDGgAnOOWSwx4aYAw0VVQ8HqBPMT5hjAnFch8dABFCKMoH6Mf4pXSmKesqqYtkMjdhaXLfNmVuFjFxbSirX8n4ra42xlQuGbo_psq9S_rWSahzH6OPR-hj0TX64-17iH5ef51d3aaj8c23q-EoNTyDJuVCikJi7olTljDLbEFd4TAxmfSWeCmBGCCSckUkKGNxxi0zwgJjFjKgh-hiM3cV6t-tj41eljH3i4WpfN1GDQI4Ayn_D5lgGSNrePYPfKrbUHVL6C40IAqrrEOXG5SHOsbgC70K5dKEVw1Yr0-hd6fo7Ol2YGuX3vVym30HzrfAxC7tInSplrF3TAAout413bgyNv5lVzfhWYuMZlzPJlM9Vez76P5B6Lt-rsljv8T7D_4FlxOqbA</recordid><startdate>20030301</startdate><enddate>20030301</enddate><creator>Huber, Marc M</creator><creator>Canonica, Silvio</creator><creator>Park, Gun-Young</creator><creator>von Gunten, Urs</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><scope>7QH</scope><scope>7TV</scope><scope>7UA</scope></search><sort><creationdate>20030301</creationdate><title>Oxidation of Pharmaceuticals during Ozonation and Advanced Oxidation Processes</title><author>Huber, Marc M ; Canonica, Silvio ; Park, Gun-Young ; von Gunten, Urs</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a571t-5686f805e2d9b24b4bf3dfd02a78eb2e8812a1283592819ab075b4a6b144b1713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Applied sciences</topic><topic>Drinking water</topic><topic>Drinking water and swimming-pool water. Desalination</topic><topic>Environmental cleanup</topic><topic>Exact sciences and technology</topic><topic>Hydroxyl Radical - chemistry</topic><topic>Oxidants - chemistry</topic><topic>Oxidants, Photochemical - chemistry</topic><topic>Oxidation</topic><topic>Oxidation-Reduction</topic><topic>Ozone</topic><topic>Ozone - chemistry</topic><topic>Pharmaceutical Preparations</topic><topic>Pharmaceuticals</topic><topic>Pollution</topic><topic>Water Pollutants</topic><topic>Water pollution</topic><topic>Water Purification - methods</topic><topic>Water treatment and pollution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huber, Marc M</creatorcontrib><creatorcontrib>Canonica, Silvio</creatorcontrib><creatorcontrib>Park, Gun-Young</creatorcontrib><creatorcontrib>von Gunten, Urs</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>Aqualine</collection><collection>Pollution Abstracts</collection><collection>Water Resources Abstracts</collection><jtitle>Environmental science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huber, Marc M</au><au>Canonica, Silvio</au><au>Park, Gun-Young</au><au>von Gunten, Urs</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Oxidation of Pharmaceuticals during Ozonation and Advanced Oxidation Processes</atitle><jtitle>Environmental science &amp; technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2003-03-01</date><risdate>2003</risdate><volume>37</volume><issue>5</issue><spage>1016</spage><epage>1024</epage><pages>1016-1024</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><coden>ESTHAG</coden><abstract>This study investigates the oxidation of pharmaceuticals during conventional ozonation and advanced oxidation processes (AOPs) applied in drinking water treatment. In a first step, second-order rate constants for the reactions of selected pharmaceuticals with ozone (k O 3 ) and OH radicals (k OH) were determined in bench-scale experiments (in brackets apparent k O 3 at pH 7 and T = 20 °C):  bezafibrate (590 ± 50 M-1 s-1), carbamazepine (∼3 × 105 M-1 s-1), diazepam (0.75 ± 0.15 M-1 s-1), diclofenac (∼1 × 106 M-1 s-1), 17α-ethinylestradiol (∼3 × 106 M-1 s-1), ibuprofen (9.6 ± 1.0 M-1 s-1), iopromide (&lt;0.8 M-1 s-1), sulfamethoxazole (∼2.5 × 106 M-1 s-1), and roxithromycin (∼7 × 104 M-1 s-1). For five of the pharmaceuticals the apparent k O 3 at pH 7 was &gt;5 × 104 M-1 s-1, indicating that these compounds are completely transformed during ozonation processes. Values for k OH ranged from 3.3 to 9.8 × 109 M-1 s-1. Compared to other important micropollutants such as MTBE and atrazine, the selected pharmaceuticals reacted about two to three times faster with OH radicals. In the second part of the study, oxidation kinetics of the selected pharmaceuticals were investigated in ozonation experiments performed in different natural waters. It could be shown that the second-order rate constants determined in pure aqueous solution could be applied to predict the behavior of pharmaceuticals dissolved in natural waters. Overall it can be concluded that ozonation and AOPs are promising processes for an efficient removal of pharmaceuticals in drinking waters.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>12666935</pmid><doi>10.1021/es025896h</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0013-936X
ispartof Environmental science & technology, 2003-03, Vol.37 (5), p.1016-1024
issn 0013-936X
1520-5851
language eng
recordid cdi_proquest_miscellaneous_16154188
source MEDLINE; American Chemical Society Journals
subjects Applied sciences
Drinking water
Drinking water and swimming-pool water. Desalination
Environmental cleanup
Exact sciences and technology
Hydroxyl Radical - chemistry
Oxidants - chemistry
Oxidants, Photochemical - chemistry
Oxidation
Oxidation-Reduction
Ozone
Ozone - chemistry
Pharmaceutical Preparations
Pharmaceuticals
Pollution
Water Pollutants
Water pollution
Water Purification - methods
Water treatment and pollution
title Oxidation of Pharmaceuticals during Ozonation and Advanced Oxidation Processes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T16%3A45%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Oxidation%20of%20Pharmaceuticals%20during%20Ozonation%20and%20Advanced%20Oxidation%20Processes&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Huber,%20Marc%20M&rft.date=2003-03-01&rft.volume=37&rft.issue=5&rft.spage=1016&rft.epage=1024&rft.pages=1016-1024&rft.issn=0013-936X&rft.eissn=1520-5851&rft.coden=ESTHAG&rft_id=info:doi/10.1021/es025896h&rft_dat=%3Cproquest_cross%3E16154188%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=230129097&rft_id=info:pmid/12666935&rfr_iscdi=true