Oxidation of Pharmaceuticals during Ozonation and Advanced Oxidation Processes
This study investigates the oxidation of pharmaceuticals during conventional ozonation and advanced oxidation processes (AOPs) applied in drinking water treatment. In a first step, second-order rate constants for the reactions of selected pharmaceuticals with ozone (k O 3 ) and OH radicals (k OH) we...
Gespeichert in:
Veröffentlicht in: | Environmental science & technology 2003-03, Vol.37 (5), p.1016-1024 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1024 |
---|---|
container_issue | 5 |
container_start_page | 1016 |
container_title | Environmental science & technology |
container_volume | 37 |
creator | Huber, Marc M Canonica, Silvio Park, Gun-Young von Gunten, Urs |
description | This study investigates the oxidation of pharmaceuticals during conventional ozonation and advanced oxidation processes (AOPs) applied in drinking water treatment. In a first step, second-order rate constants for the reactions of selected pharmaceuticals with ozone (k O 3 ) and OH radicals (k OH) were determined in bench-scale experiments (in brackets apparent k O 3 at pH 7 and T = 20 °C): bezafibrate (590 ± 50 M-1 s-1), carbamazepine (∼3 × 105 M-1 s-1), diazepam (0.75 ± 0.15 M-1 s-1), diclofenac (∼1 × 106 M-1 s-1), 17α-ethinylestradiol (∼3 × 106 M-1 s-1), ibuprofen (9.6 ± 1.0 M-1 s-1), iopromide (5 × 104 M-1 s-1, indicating that these compounds are completely transformed during ozonation processes. Values for k OH ranged from 3.3 to 9.8 × 109 M-1 s-1. Compared to other important micropollutants such as MTBE and atrazine, the selected pharmaceuticals reacted about two to three times faster with OH radicals. In the second part of the study, oxidation kinetics of the selected pharmaceuticals were investigated in ozonation experiments performed in different natural waters. It could be shown that the second-order rate constants determined in pure aqueous solution could be applied to predict the behavior of pharmaceuticals dissolved in natural waters. Overall it can be concluded that ozonation and AOPs are promising processes for an efficient removal of pharmaceuticals in drinking waters. |
doi_str_mv | 10.1021/es025896h |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_16154188</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>16154188</sourcerecordid><originalsourceid>FETCH-LOGICAL-a571t-5686f805e2d9b24b4bf3dfd02a78eb2e8812a1283592819ab075b4a6b144b1713</originalsourceid><addsrcrecordid>eNqF0c9P2zAUB3BrYoIOOPAPoAgJJA7Z_Pwr9rFCAya6tagd4mbZsbMG2qSzkwn465eqVSONw04-vM978vs-hE4AfwZM4IuPmHCpxPwDGgAnOOWSwx4aYAw0VVQ8HqBPMT5hjAnFch8dABFCKMoH6Mf4pXSmKesqqYtkMjdhaXLfNmVuFjFxbSirX8n4ra42xlQuGbo_psq9S_rWSahzH6OPR-hj0TX64-17iH5ef51d3aaj8c23q-EoNTyDJuVCikJi7olTljDLbEFd4TAxmfSWeCmBGCCSckUkKGNxxi0zwgJjFjKgh-hiM3cV6t-tj41eljH3i4WpfN1GDQI4Ayn_D5lgGSNrePYPfKrbUHVL6C40IAqrrEOXG5SHOsbgC70K5dKEVw1Yr0-hd6fo7Ol2YGuX3vVym30HzrfAxC7tInSplrF3TAAout413bgyNv5lVzfhWYuMZlzPJlM9Vez76P5B6Lt-rsljv8T7D_4FlxOqbA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>230129097</pqid></control><display><type>article</type><title>Oxidation of Pharmaceuticals during Ozonation and Advanced Oxidation Processes</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Huber, Marc M ; Canonica, Silvio ; Park, Gun-Young ; von Gunten, Urs</creator><creatorcontrib>Huber, Marc M ; Canonica, Silvio ; Park, Gun-Young ; von Gunten, Urs</creatorcontrib><description>This study investigates the oxidation of pharmaceuticals during conventional ozonation and advanced oxidation processes (AOPs) applied in drinking water treatment. In a first step, second-order rate constants for the reactions of selected pharmaceuticals with ozone (k O 3 ) and OH radicals (k OH) were determined in bench-scale experiments (in brackets apparent k O 3 at pH 7 and T = 20 °C): bezafibrate (590 ± 50 M-1 s-1), carbamazepine (∼3 × 105 M-1 s-1), diazepam (0.75 ± 0.15 M-1 s-1), diclofenac (∼1 × 106 M-1 s-1), 17α-ethinylestradiol (∼3 × 106 M-1 s-1), ibuprofen (9.6 ± 1.0 M-1 s-1), iopromide (<0.8 M-1 s-1), sulfamethoxazole (∼2.5 × 106 M-1 s-1), and roxithromycin (∼7 × 104 M-1 s-1). For five of the pharmaceuticals the apparent k O 3 at pH 7 was >5 × 104 M-1 s-1, indicating that these compounds are completely transformed during ozonation processes. Values for k OH ranged from 3.3 to 9.8 × 109 M-1 s-1. Compared to other important micropollutants such as MTBE and atrazine, the selected pharmaceuticals reacted about two to three times faster with OH radicals. In the second part of the study, oxidation kinetics of the selected pharmaceuticals were investigated in ozonation experiments performed in different natural waters. It could be shown that the second-order rate constants determined in pure aqueous solution could be applied to predict the behavior of pharmaceuticals dissolved in natural waters. Overall it can be concluded that ozonation and AOPs are promising processes for an efficient removal of pharmaceuticals in drinking waters.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/es025896h</identifier><identifier>PMID: 12666935</identifier><identifier>CODEN: ESTHAG</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Applied sciences ; Drinking water ; Drinking water and swimming-pool water. Desalination ; Environmental cleanup ; Exact sciences and technology ; Hydroxyl Radical - chemistry ; Oxidants - chemistry ; Oxidants, Photochemical - chemistry ; Oxidation ; Oxidation-Reduction ; Ozone ; Ozone - chemistry ; Pharmaceutical Preparations ; Pharmaceuticals ; Pollution ; Water Pollutants ; Water pollution ; Water Purification - methods ; Water treatment and pollution</subject><ispartof>Environmental science & technology, 2003-03, Vol.37 (5), p.1016-1024</ispartof><rights>Copyright © 2003 American Chemical Society</rights><rights>2003 INIST-CNRS</rights><rights>Copyright American Chemical Society Mar 1, 2003</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a571t-5686f805e2d9b24b4bf3dfd02a78eb2e8812a1283592819ab075b4a6b144b1713</citedby><cites>FETCH-LOGICAL-a571t-5686f805e2d9b24b4bf3dfd02a78eb2e8812a1283592819ab075b4a6b144b1713</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/es025896h$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/es025896h$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=14611931$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12666935$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Huber, Marc M</creatorcontrib><creatorcontrib>Canonica, Silvio</creatorcontrib><creatorcontrib>Park, Gun-Young</creatorcontrib><creatorcontrib>von Gunten, Urs</creatorcontrib><title>Oxidation of Pharmaceuticals during Ozonation and Advanced Oxidation Processes</title><title>Environmental science & technology</title><addtitle>Environ. Sci. Technol</addtitle><description>This study investigates the oxidation of pharmaceuticals during conventional ozonation and advanced oxidation processes (AOPs) applied in drinking water treatment. In a first step, second-order rate constants for the reactions of selected pharmaceuticals with ozone (k O 3 ) and OH radicals (k OH) were determined in bench-scale experiments (in brackets apparent k O 3 at pH 7 and T = 20 °C): bezafibrate (590 ± 50 M-1 s-1), carbamazepine (∼3 × 105 M-1 s-1), diazepam (0.75 ± 0.15 M-1 s-1), diclofenac (∼1 × 106 M-1 s-1), 17α-ethinylestradiol (∼3 × 106 M-1 s-1), ibuprofen (9.6 ± 1.0 M-1 s-1), iopromide (<0.8 M-1 s-1), sulfamethoxazole (∼2.5 × 106 M-1 s-1), and roxithromycin (∼7 × 104 M-1 s-1). For five of the pharmaceuticals the apparent k O 3 at pH 7 was >5 × 104 M-1 s-1, indicating that these compounds are completely transformed during ozonation processes. Values for k OH ranged from 3.3 to 9.8 × 109 M-1 s-1. Compared to other important micropollutants such as MTBE and atrazine, the selected pharmaceuticals reacted about two to three times faster with OH radicals. In the second part of the study, oxidation kinetics of the selected pharmaceuticals were investigated in ozonation experiments performed in different natural waters. It could be shown that the second-order rate constants determined in pure aqueous solution could be applied to predict the behavior of pharmaceuticals dissolved in natural waters. Overall it can be concluded that ozonation and AOPs are promising processes for an efficient removal of pharmaceuticals in drinking waters.</description><subject>Applied sciences</subject><subject>Drinking water</subject><subject>Drinking water and swimming-pool water. Desalination</subject><subject>Environmental cleanup</subject><subject>Exact sciences and technology</subject><subject>Hydroxyl Radical - chemistry</subject><subject>Oxidants - chemistry</subject><subject>Oxidants, Photochemical - chemistry</subject><subject>Oxidation</subject><subject>Oxidation-Reduction</subject><subject>Ozone</subject><subject>Ozone - chemistry</subject><subject>Pharmaceutical Preparations</subject><subject>Pharmaceuticals</subject><subject>Pollution</subject><subject>Water Pollutants</subject><subject>Water pollution</subject><subject>Water Purification - methods</subject><subject>Water treatment and pollution</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0c9P2zAUB3BrYoIOOPAPoAgJJA7Z_Pwr9rFCAya6tagd4mbZsbMG2qSzkwn465eqVSONw04-vM978vs-hE4AfwZM4IuPmHCpxPwDGgAnOOWSwx4aYAw0VVQ8HqBPMT5hjAnFch8dABFCKMoH6Mf4pXSmKesqqYtkMjdhaXLfNmVuFjFxbSirX8n4ra42xlQuGbo_psq9S_rWSahzH6OPR-hj0TX64-17iH5ef51d3aaj8c23q-EoNTyDJuVCikJi7olTljDLbEFd4TAxmfSWeCmBGCCSckUkKGNxxi0zwgJjFjKgh-hiM3cV6t-tj41eljH3i4WpfN1GDQI4Ayn_D5lgGSNrePYPfKrbUHVL6C40IAqrrEOXG5SHOsbgC70K5dKEVw1Yr0-hd6fo7Ol2YGuX3vVym30HzrfAxC7tInSplrF3TAAout413bgyNv5lVzfhWYuMZlzPJlM9Vez76P5B6Lt-rsljv8T7D_4FlxOqbA</recordid><startdate>20030301</startdate><enddate>20030301</enddate><creator>Huber, Marc M</creator><creator>Canonica, Silvio</creator><creator>Park, Gun-Young</creator><creator>von Gunten, Urs</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><scope>7QH</scope><scope>7TV</scope><scope>7UA</scope></search><sort><creationdate>20030301</creationdate><title>Oxidation of Pharmaceuticals during Ozonation and Advanced Oxidation Processes</title><author>Huber, Marc M ; Canonica, Silvio ; Park, Gun-Young ; von Gunten, Urs</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a571t-5686f805e2d9b24b4bf3dfd02a78eb2e8812a1283592819ab075b4a6b144b1713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Applied sciences</topic><topic>Drinking water</topic><topic>Drinking water and swimming-pool water. Desalination</topic><topic>Environmental cleanup</topic><topic>Exact sciences and technology</topic><topic>Hydroxyl Radical - chemistry</topic><topic>Oxidants - chemistry</topic><topic>Oxidants, Photochemical - chemistry</topic><topic>Oxidation</topic><topic>Oxidation-Reduction</topic><topic>Ozone</topic><topic>Ozone - chemistry</topic><topic>Pharmaceutical Preparations</topic><topic>Pharmaceuticals</topic><topic>Pollution</topic><topic>Water Pollutants</topic><topic>Water pollution</topic><topic>Water Purification - methods</topic><topic>Water treatment and pollution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huber, Marc M</creatorcontrib><creatorcontrib>Canonica, Silvio</creatorcontrib><creatorcontrib>Park, Gun-Young</creatorcontrib><creatorcontrib>von Gunten, Urs</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>Aqualine</collection><collection>Pollution Abstracts</collection><collection>Water Resources Abstracts</collection><jtitle>Environmental science & technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huber, Marc M</au><au>Canonica, Silvio</au><au>Park, Gun-Young</au><au>von Gunten, Urs</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Oxidation of Pharmaceuticals during Ozonation and Advanced Oxidation Processes</atitle><jtitle>Environmental science & technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2003-03-01</date><risdate>2003</risdate><volume>37</volume><issue>5</issue><spage>1016</spage><epage>1024</epage><pages>1016-1024</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><coden>ESTHAG</coden><abstract>This study investigates the oxidation of pharmaceuticals during conventional ozonation and advanced oxidation processes (AOPs) applied in drinking water treatment. In a first step, second-order rate constants for the reactions of selected pharmaceuticals with ozone (k O 3 ) and OH radicals (k OH) were determined in bench-scale experiments (in brackets apparent k O 3 at pH 7 and T = 20 °C): bezafibrate (590 ± 50 M-1 s-1), carbamazepine (∼3 × 105 M-1 s-1), diazepam (0.75 ± 0.15 M-1 s-1), diclofenac (∼1 × 106 M-1 s-1), 17α-ethinylestradiol (∼3 × 106 M-1 s-1), ibuprofen (9.6 ± 1.0 M-1 s-1), iopromide (<0.8 M-1 s-1), sulfamethoxazole (∼2.5 × 106 M-1 s-1), and roxithromycin (∼7 × 104 M-1 s-1). For five of the pharmaceuticals the apparent k O 3 at pH 7 was >5 × 104 M-1 s-1, indicating that these compounds are completely transformed during ozonation processes. Values for k OH ranged from 3.3 to 9.8 × 109 M-1 s-1. Compared to other important micropollutants such as MTBE and atrazine, the selected pharmaceuticals reacted about two to three times faster with OH radicals. In the second part of the study, oxidation kinetics of the selected pharmaceuticals were investigated in ozonation experiments performed in different natural waters. It could be shown that the second-order rate constants determined in pure aqueous solution could be applied to predict the behavior of pharmaceuticals dissolved in natural waters. Overall it can be concluded that ozonation and AOPs are promising processes for an efficient removal of pharmaceuticals in drinking waters.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>12666935</pmid><doi>10.1021/es025896h</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-936X |
ispartof | Environmental science & technology, 2003-03, Vol.37 (5), p.1016-1024 |
issn | 0013-936X 1520-5851 |
language | eng |
recordid | cdi_proquest_miscellaneous_16154188 |
source | MEDLINE; American Chemical Society Journals |
subjects | Applied sciences Drinking water Drinking water and swimming-pool water. Desalination Environmental cleanup Exact sciences and technology Hydroxyl Radical - chemistry Oxidants - chemistry Oxidants, Photochemical - chemistry Oxidation Oxidation-Reduction Ozone Ozone - chemistry Pharmaceutical Preparations Pharmaceuticals Pollution Water Pollutants Water pollution Water Purification - methods Water treatment and pollution |
title | Oxidation of Pharmaceuticals during Ozonation and Advanced Oxidation Processes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T16%3A45%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Oxidation%20of%20Pharmaceuticals%20during%20Ozonation%20and%20Advanced%20Oxidation%20Processes&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Huber,%20Marc%20M&rft.date=2003-03-01&rft.volume=37&rft.issue=5&rft.spage=1016&rft.epage=1024&rft.pages=1016-1024&rft.issn=0013-936X&rft.eissn=1520-5851&rft.coden=ESTHAG&rft_id=info:doi/10.1021/es025896h&rft_dat=%3Cproquest_cross%3E16154188%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=230129097&rft_id=info:pmid/12666935&rfr_iscdi=true |