As(III) removal from groundwaters using fixed-bed upflow bioreactors
The application of biological oxidation of iron and manganese, as a potential treatment method for the removal of arsenic from contaminated groundwaters, was examined in this paper. This method was based on the growth of certain species of indigenous bacteria, which are capable of oxidizing the solu...
Gespeichert in:
Veröffentlicht in: | Chemosphere (Oxford) 2002-04, Vol.47 (3), p.325-332 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The application of biological oxidation of iron and manganese, as a potential treatment method for the removal of arsenic from contaminated groundwaters, was examined in this paper. This method was based on the growth of certain species of indigenous bacteria, which are capable of oxidizing the soluble iron and manganese ions; the oxidized forms can be subsequently removed from the aqueous stream by over 97%, through their transformation to insoluble oxides and separation by a suitable filter medium. Arsenic was removed by around 80%, under certain conditions, which were found to be sufficient for Fe(II) removal (dissolved oxygen 2.7 mg/l, redox 280–290 mV, pH 7.2, U 8.25 m/h). The specific treatment technique presents several advantages towards conventional physicochemical treatment methods, such as enhanced coagulation or direct adsorption since: (a) it does not require the addition of other chemicals for oxidizing and removing As(III), (b) it does not require close monitoring of a breakthrough point, as in conventional column adsorption processes and (c) it could find application for the removal of, at least, three groundwater contaminants (Fe, Mn, As). |
---|---|
ISSN: | 0045-6535 1879-1298 |
DOI: | 10.1016/S0045-6535(01)00306-X |