Functional segmentation of the hippocampus in the healthy human brain and in Alzheimer's disease
In this study we segment the hippocampus according to functional connectivity assessed from resting state functional magnetic resonance images in healthy subjects and in patients with Alzheimer's disease (AD). We recorded the resting FMRI signal from 16 patients and 22 controls. We used seed-ba...
Gespeichert in:
Veröffentlicht in: | NeuroImage (Orlando, Fla.) Fla.), 2013-02, Vol.66, p.28-35 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 35 |
---|---|
container_issue | |
container_start_page | 28 |
container_title | NeuroImage (Orlando, Fla.) |
container_volume | 66 |
creator | Zarei, Mojtaba Beckmann, Christian F. Binnewijzend, Maja A.A. Schoonheim, Menno M. Oghabian, Mohammad Ali Sanz-Arigita, Ernesto J. Scheltens, Philip Matthews, Paul M. Barkhof, Frederik |
description | In this study we segment the hippocampus according to functional connectivity assessed from resting state functional magnetic resonance images in healthy subjects and in patients with Alzheimer's disease (AD).
We recorded the resting FMRI signal from 16 patients and 22 controls. We used seed-based functional correlation analyses to calculate partial correlations of all voxels in the hippocampus relative to characteristic regional signal changes in the thalamus, the prefrontal cortex (PFC) and the posterior cingulate cortex (PCC), while controlling for ventricular CSF and white matter signals. Group comparisons were carried out controlling for age, gender, hippocampal volume and brain volume. The strength of functional connectivity in each region also was correlated with neuropsychological measures.
We found that the hippocampus can be segmented into three distinct functional subregions (head, body, and tail), according to the relative connectivity with PFC, PCC and thalamus, respectively. The AD group showed stronger hippocampus–PFC and weaker hippocampus–PCC functional connectivity, the magnitudes of which correlated with MMSE in both cases.
The results are consistent with an adaptive role of the PFC in the context of progression of dysfunction in PCC during earlier stages of AD. Extension of our approach could integrate regional volume measures for the hippocampus with their functional connectivity patterns in ways that should increase sensitivity for assessment of AD onset and progression.
► Human hippocampus can be divided into 3 regions, based on functional connectivity. ► Hippocampal functional connectivity changes in Alzheimer's disease. ► Changes in the functional connectivity correlates with the episodic memory. |
doi_str_mv | 10.1016/j.neuroimage.2012.10.071 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1613947430</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1053811912010750</els_id><sourcerecordid>1500762028</sourcerecordid><originalsourceid>FETCH-LOGICAL-c581t-d967f7e808587fbc424bb42f43cf688d7b8b87cbd1a99032f89557cdfb099e243</originalsourceid><addsrcrecordid>eNqFkU1vFSEUhomxsbX6F8wkxuhmrsB8AMvaWG3SpBtdIx-HDjczMMJMk_rrZXKvNummK-Cc5wB5H4QqgncEk_7zfhdgTdFP6g52FBNayjvMyAt0RrDoatEx-nLbd03NCRGn6HXOe4yxIC1_hU5pQyjHrD9Dv67WYBYfgxqrDHcThEVtxyq6ahmgGvw8R6Omec2VD4cSqHEZHqphnVSodFKlroLd2hfjnwH8BOljrqzPoDK8QSdOjRneHtdz9PPq64_L7_XN7bfry4ub2nScLLUVPXMMOOYdZ06blrZat9S1jXE955Zprjkz2hIlBG6o46LrmLFOYyGAts05-nS4d07x9wp5kZPPBsZRBYhrlqQnjWhZ2-Dn0Q6XbCimvKDvn6D7uKYS1kZ1BaFE9IXiB8qkmHMCJ-dU3KQHSbDchMm9fBQmN2Fbpwgro--OD6x6Avt_8J-hAnw4AiobNbqkgvH5kWOkGMcb9-XAQQn53kOS2XgIBqxPYBZpo3_-N38BA364Tw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1552022196</pqid></control><display><type>article</type><title>Functional segmentation of the hippocampus in the healthy human brain and in Alzheimer's disease</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Zarei, Mojtaba ; Beckmann, Christian F. ; Binnewijzend, Maja A.A. ; Schoonheim, Menno M. ; Oghabian, Mohammad Ali ; Sanz-Arigita, Ernesto J. ; Scheltens, Philip ; Matthews, Paul M. ; Barkhof, Frederik</creator><creatorcontrib>Zarei, Mojtaba ; Beckmann, Christian F. ; Binnewijzend, Maja A.A. ; Schoonheim, Menno M. ; Oghabian, Mohammad Ali ; Sanz-Arigita, Ernesto J. ; Scheltens, Philip ; Matthews, Paul M. ; Barkhof, Frederik</creatorcontrib><description>In this study we segment the hippocampus according to functional connectivity assessed from resting state functional magnetic resonance images in healthy subjects and in patients with Alzheimer's disease (AD).
We recorded the resting FMRI signal from 16 patients and 22 controls. We used seed-based functional correlation analyses to calculate partial correlations of all voxels in the hippocampus relative to characteristic regional signal changes in the thalamus, the prefrontal cortex (PFC) and the posterior cingulate cortex (PCC), while controlling for ventricular CSF and white matter signals. Group comparisons were carried out controlling for age, gender, hippocampal volume and brain volume. The strength of functional connectivity in each region also was correlated with neuropsychological measures.
We found that the hippocampus can be segmented into three distinct functional subregions (head, body, and tail), according to the relative connectivity with PFC, PCC and thalamus, respectively. The AD group showed stronger hippocampus–PFC and weaker hippocampus–PCC functional connectivity, the magnitudes of which correlated with MMSE in both cases.
The results are consistent with an adaptive role of the PFC in the context of progression of dysfunction in PCC during earlier stages of AD. Extension of our approach could integrate regional volume measures for the hippocampus with their functional connectivity patterns in ways that should increase sensitivity for assessment of AD onset and progression.
► Human hippocampus can be divided into 3 regions, based on functional connectivity. ► Hippocampal functional connectivity changes in Alzheimer's disease. ► Changes in the functional connectivity correlates with the episodic memory.</description><identifier>ISSN: 1053-8119</identifier><identifier>EISSN: 1095-9572</identifier><identifier>DOI: 10.1016/j.neuroimage.2012.10.071</identifier><identifier>PMID: 23128076</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Adult and adolescent clinical studies ; Aged ; Aged, 80 and over ; Alzheimer Disease - physiopathology ; Biological and medical sciences ; Brain ; Brain Mapping - methods ; Degenerative and inherited degenerative diseases of the nervous system. Leukodystrophies. Prion diseases ; Female ; Hippocampus - anatomy & histology ; Hippocampus - physiology ; Humans ; Image Processing, Computer-Assisted ; Magnetic Resonance Imaging ; Male ; Medical sciences ; Memory ; Middle Aged ; Neural Pathways - physiopathology ; Neurology ; Neuropsychological Tests ; Older people ; Organic mental disorders. Neuropsychology ; Patients ; Psychology. Psychoanalysis. Psychiatry ; Psychopathology. Psychiatry ; Studies ; Young Adult</subject><ispartof>NeuroImage (Orlando, Fla.), 2013-02, Vol.66, p.28-35</ispartof><rights>2012 Elsevier Inc.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2012 Elsevier Inc. All rights reserved.</rights><rights>Copyright Elsevier Limited Feb 1, 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c581t-d967f7e808587fbc424bb42f43cf688d7b8b87cbd1a99032f89557cdfb099e243</citedby><cites>FETCH-LOGICAL-c581t-d967f7e808587fbc424bb42f43cf688d7b8b87cbd1a99032f89557cdfb099e243</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1053811912010750$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27110906$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23128076$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zarei, Mojtaba</creatorcontrib><creatorcontrib>Beckmann, Christian F.</creatorcontrib><creatorcontrib>Binnewijzend, Maja A.A.</creatorcontrib><creatorcontrib>Schoonheim, Menno M.</creatorcontrib><creatorcontrib>Oghabian, Mohammad Ali</creatorcontrib><creatorcontrib>Sanz-Arigita, Ernesto J.</creatorcontrib><creatorcontrib>Scheltens, Philip</creatorcontrib><creatorcontrib>Matthews, Paul M.</creatorcontrib><creatorcontrib>Barkhof, Frederik</creatorcontrib><title>Functional segmentation of the hippocampus in the healthy human brain and in Alzheimer's disease</title><title>NeuroImage (Orlando, Fla.)</title><addtitle>Neuroimage</addtitle><description>In this study we segment the hippocampus according to functional connectivity assessed from resting state functional magnetic resonance images in healthy subjects and in patients with Alzheimer's disease (AD).
We recorded the resting FMRI signal from 16 patients and 22 controls. We used seed-based functional correlation analyses to calculate partial correlations of all voxels in the hippocampus relative to characteristic regional signal changes in the thalamus, the prefrontal cortex (PFC) and the posterior cingulate cortex (PCC), while controlling for ventricular CSF and white matter signals. Group comparisons were carried out controlling for age, gender, hippocampal volume and brain volume. The strength of functional connectivity in each region also was correlated with neuropsychological measures.
We found that the hippocampus can be segmented into three distinct functional subregions (head, body, and tail), according to the relative connectivity with PFC, PCC and thalamus, respectively. The AD group showed stronger hippocampus–PFC and weaker hippocampus–PCC functional connectivity, the magnitudes of which correlated with MMSE in both cases.
The results are consistent with an adaptive role of the PFC in the context of progression of dysfunction in PCC during earlier stages of AD. Extension of our approach could integrate regional volume measures for the hippocampus with their functional connectivity patterns in ways that should increase sensitivity for assessment of AD onset and progression.
► Human hippocampus can be divided into 3 regions, based on functional connectivity. ► Hippocampal functional connectivity changes in Alzheimer's disease. ► Changes in the functional connectivity correlates with the episodic memory.</description><subject>Adult and adolescent clinical studies</subject><subject>Aged</subject><subject>Aged, 80 and over</subject><subject>Alzheimer Disease - physiopathology</subject><subject>Biological and medical sciences</subject><subject>Brain</subject><subject>Brain Mapping - methods</subject><subject>Degenerative and inherited degenerative diseases of the nervous system. Leukodystrophies. Prion diseases</subject><subject>Female</subject><subject>Hippocampus - anatomy & histology</subject><subject>Hippocampus - physiology</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted</subject><subject>Magnetic Resonance Imaging</subject><subject>Male</subject><subject>Medical sciences</subject><subject>Memory</subject><subject>Middle Aged</subject><subject>Neural Pathways - physiopathology</subject><subject>Neurology</subject><subject>Neuropsychological Tests</subject><subject>Older people</subject><subject>Organic mental disorders. Neuropsychology</subject><subject>Patients</subject><subject>Psychology. Psychoanalysis. Psychiatry</subject><subject>Psychopathology. Psychiatry</subject><subject>Studies</subject><subject>Young Adult</subject><issn>1053-8119</issn><issn>1095-9572</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqFkU1vFSEUhomxsbX6F8wkxuhmrsB8AMvaWG3SpBtdIx-HDjczMMJMk_rrZXKvNummK-Cc5wB5H4QqgncEk_7zfhdgTdFP6g52FBNayjvMyAt0RrDoatEx-nLbd03NCRGn6HXOe4yxIC1_hU5pQyjHrD9Dv67WYBYfgxqrDHcThEVtxyq6ahmgGvw8R6Omec2VD4cSqHEZHqphnVSodFKlroLd2hfjnwH8BOljrqzPoDK8QSdOjRneHtdz9PPq64_L7_XN7bfry4ub2nScLLUVPXMMOOYdZ06blrZat9S1jXE955Zprjkz2hIlBG6o46LrmLFOYyGAts05-nS4d07x9wp5kZPPBsZRBYhrlqQnjWhZ2-Dn0Q6XbCimvKDvn6D7uKYS1kZ1BaFE9IXiB8qkmHMCJ-dU3KQHSbDchMm9fBQmN2Fbpwgro--OD6x6Avt_8J-hAnw4AiobNbqkgvH5kWOkGMcb9-XAQQn53kOS2XgIBqxPYBZpo3_-N38BA364Tw</recordid><startdate>20130201</startdate><enddate>20130201</enddate><creator>Zarei, Mojtaba</creator><creator>Beckmann, Christian F.</creator><creator>Binnewijzend, Maja A.A.</creator><creator>Schoonheim, Menno M.</creator><creator>Oghabian, Mohammad Ali</creator><creator>Sanz-Arigita, Ernesto J.</creator><creator>Scheltens, Philip</creator><creator>Matthews, Paul M.</creator><creator>Barkhof, Frederik</creator><general>Elsevier Inc</general><general>Elsevier</general><general>Elsevier Limited</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope><scope>7QO</scope><scope>7X8</scope></search><sort><creationdate>20130201</creationdate><title>Functional segmentation of the hippocampus in the healthy human brain and in Alzheimer's disease</title><author>Zarei, Mojtaba ; Beckmann, Christian F. ; Binnewijzend, Maja A.A. ; Schoonheim, Menno M. ; Oghabian, Mohammad Ali ; Sanz-Arigita, Ernesto J. ; Scheltens, Philip ; Matthews, Paul M. ; Barkhof, Frederik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c581t-d967f7e808587fbc424bb42f43cf688d7b8b87cbd1a99032f89557cdfb099e243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Adult and adolescent clinical studies</topic><topic>Aged</topic><topic>Aged, 80 and over</topic><topic>Alzheimer Disease - physiopathology</topic><topic>Biological and medical sciences</topic><topic>Brain</topic><topic>Brain Mapping - methods</topic><topic>Degenerative and inherited degenerative diseases of the nervous system. Leukodystrophies. Prion diseases</topic><topic>Female</topic><topic>Hippocampus - anatomy & histology</topic><topic>Hippocampus - physiology</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted</topic><topic>Magnetic Resonance Imaging</topic><topic>Male</topic><topic>Medical sciences</topic><topic>Memory</topic><topic>Middle Aged</topic><topic>Neural Pathways - physiopathology</topic><topic>Neurology</topic><topic>Neuropsychological Tests</topic><topic>Older people</topic><topic>Organic mental disorders. Neuropsychology</topic><topic>Patients</topic><topic>Psychology. Psychoanalysis. Psychiatry</topic><topic>Psychopathology. Psychiatry</topic><topic>Studies</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zarei, Mojtaba</creatorcontrib><creatorcontrib>Beckmann, Christian F.</creatorcontrib><creatorcontrib>Binnewijzend, Maja A.A.</creatorcontrib><creatorcontrib>Schoonheim, Menno M.</creatorcontrib><creatorcontrib>Oghabian, Mohammad Ali</creatorcontrib><creatorcontrib>Sanz-Arigita, Ernesto J.</creatorcontrib><creatorcontrib>Scheltens, Philip</creatorcontrib><creatorcontrib>Matthews, Paul M.</creatorcontrib><creatorcontrib>Barkhof, Frederik</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>NeuroImage (Orlando, Fla.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zarei, Mojtaba</au><au>Beckmann, Christian F.</au><au>Binnewijzend, Maja A.A.</au><au>Schoonheim, Menno M.</au><au>Oghabian, Mohammad Ali</au><au>Sanz-Arigita, Ernesto J.</au><au>Scheltens, Philip</au><au>Matthews, Paul M.</au><au>Barkhof, Frederik</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Functional segmentation of the hippocampus in the healthy human brain and in Alzheimer's disease</atitle><jtitle>NeuroImage (Orlando, Fla.)</jtitle><addtitle>Neuroimage</addtitle><date>2013-02-01</date><risdate>2013</risdate><volume>66</volume><spage>28</spage><epage>35</epage><pages>28-35</pages><issn>1053-8119</issn><eissn>1095-9572</eissn><abstract>In this study we segment the hippocampus according to functional connectivity assessed from resting state functional magnetic resonance images in healthy subjects and in patients with Alzheimer's disease (AD).
We recorded the resting FMRI signal from 16 patients and 22 controls. We used seed-based functional correlation analyses to calculate partial correlations of all voxels in the hippocampus relative to characteristic regional signal changes in the thalamus, the prefrontal cortex (PFC) and the posterior cingulate cortex (PCC), while controlling for ventricular CSF and white matter signals. Group comparisons were carried out controlling for age, gender, hippocampal volume and brain volume. The strength of functional connectivity in each region also was correlated with neuropsychological measures.
We found that the hippocampus can be segmented into three distinct functional subregions (head, body, and tail), according to the relative connectivity with PFC, PCC and thalamus, respectively. The AD group showed stronger hippocampus–PFC and weaker hippocampus–PCC functional connectivity, the magnitudes of which correlated with MMSE in both cases.
The results are consistent with an adaptive role of the PFC in the context of progression of dysfunction in PCC during earlier stages of AD. Extension of our approach could integrate regional volume measures for the hippocampus with their functional connectivity patterns in ways that should increase sensitivity for assessment of AD onset and progression.
► Human hippocampus can be divided into 3 regions, based on functional connectivity. ► Hippocampal functional connectivity changes in Alzheimer's disease. ► Changes in the functional connectivity correlates with the episodic memory.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><pmid>23128076</pmid><doi>10.1016/j.neuroimage.2012.10.071</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1053-8119 |
ispartof | NeuroImage (Orlando, Fla.), 2013-02, Vol.66, p.28-35 |
issn | 1053-8119 1095-9572 |
language | eng |
recordid | cdi_proquest_miscellaneous_1613947430 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Adult and adolescent clinical studies Aged Aged, 80 and over Alzheimer Disease - physiopathology Biological and medical sciences Brain Brain Mapping - methods Degenerative and inherited degenerative diseases of the nervous system. Leukodystrophies. Prion diseases Female Hippocampus - anatomy & histology Hippocampus - physiology Humans Image Processing, Computer-Assisted Magnetic Resonance Imaging Male Medical sciences Memory Middle Aged Neural Pathways - physiopathology Neurology Neuropsychological Tests Older people Organic mental disorders. Neuropsychology Patients Psychology. Psychoanalysis. Psychiatry Psychopathology. Psychiatry Studies Young Adult |
title | Functional segmentation of the hippocampus in the healthy human brain and in Alzheimer's disease |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T12%3A50%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Functional%20segmentation%20of%20the%20hippocampus%20in%20the%20healthy%20human%20brain%20and%20in%20Alzheimer's%20disease&rft.jtitle=NeuroImage%20(Orlando,%20Fla.)&rft.au=Zarei,%20Mojtaba&rft.date=2013-02-01&rft.volume=66&rft.spage=28&rft.epage=35&rft.pages=28-35&rft.issn=1053-8119&rft.eissn=1095-9572&rft_id=info:doi/10.1016/j.neuroimage.2012.10.071&rft_dat=%3Cproquest_cross%3E1500762028%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1552022196&rft_id=info:pmid/23128076&rft_els_id=S1053811912010750&rfr_iscdi=true |