Formation of N-Nitrosodimethylamine (NDMA) from Dimethylamine during Chlorination

Chlorine disinfection of secondary wastewater effluent and drinking water can result in the production of the potent carcinogen N-nitrosodimethylamine (NDMA) at concentra tions of approximately 100 and 10 parts per trillion (ng/L), respectively. Laboratory experiments with potential NDMA precursors...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science & technology 2002-02, Vol.36 (4), p.588-595
Hauptverfasser: Mitch, William A, Sedlak, David L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 595
container_issue 4
container_start_page 588
container_title Environmental science & technology
container_volume 36
creator Mitch, William A
Sedlak, David L
description Chlorine disinfection of secondary wastewater effluent and drinking water can result in the production of the potent carcinogen N-nitrosodimethylamine (NDMA) at concentra tions of approximately 100 and 10 parts per trillion (ng/L), respectively. Laboratory experiments with potential NDMA precursors indicate that NDMA formation can form during the chlorination of dimethylamine and other secondary amines. The formation of NDMA during chlorination may involve the slow formation of 1,1-dimethylhydrazine by the reaction of monochloramine and dimethylamine followed by its rapid oxidation to NDMA and other products including dimethylcyanamide and dimethylformamide. Other pathways also lead to NDMA formation during chlorination such as the reaction of sodium hypochlorite with dimethylamine. However, the rate of NDMA formation is approximately an order of magnitude slower than that observed when monochloramine reacts with dimethylamine. The reaction exhibits a strong pH dependence due to competing reactions. It may be possible to reduce NDMA formation during chlorination by removing ammonia prior to chlorination, by breakpoint chlorination, or by avoidance of the use of monochloramine for drinking water disinfection.
doi_str_mv 10.1021/es010684q
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_16139461</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>109774634</sourcerecordid><originalsourceid>FETCH-LOGICAL-a534t-a9a2f3684d9dae8b17bfd06fbbc553dcb1497f1c0dfffab68acdc0cc9b9429e23</originalsourceid><addsrcrecordid>eNqF0UtP3DAQAGALtYLtwqF_oIoqtSqH0Jk4zuOIdksL2m5BQMXNcvwohiQGO5HKv69hV6zaHrjYlubTeB6EvEU4QMjwsw6AUFT5_RaZIMsgZRXDV2QCgDStaXG1Q96EcAMAGYVqm-wgVmVFS5yQsyPnOzFY1yfOJMt0aQfvglO208P1Qys62-vk03L-_XA_Md51yfyviBq97X8ls-vWxcdTnl3y2og26L31PSWXR18uZt_SxY-vx7PDRSoYzYdU1CIzNBataiV01WDZGAWFaRrJGFWywbwuDUpQxhjRFJWQSoKUdVPnWa0zOiUfV3nvvLsfdRh4Z4PUbSt67cbAsUBa5_F4EUaUVYxG-P4feONG38cmeJwbZliWj2h_hWScU_Da8DtvO-EfOAJ_3AZ_3ka079YJx6bTaiPX44_gwxqIIEVrvOilDRtHGeQQf52SdOVsGPTv57jwt7woacn4xek5X_zMZyfzq4KfbvIKGTZN_F_gHyevrVk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>230121773</pqid></control><display><type>article</type><title>Formation of N-Nitrosodimethylamine (NDMA) from Dimethylamine during Chlorination</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Mitch, William A ; Sedlak, David L</creator><creatorcontrib>Mitch, William A ; Sedlak, David L</creatorcontrib><description>Chlorine disinfection of secondary wastewater effluent and drinking water can result in the production of the potent carcinogen N-nitrosodimethylamine (NDMA) at concentra tions of approximately 100 and 10 parts per trillion (ng/L), respectively. Laboratory experiments with potential NDMA precursors indicate that NDMA formation can form during the chlorination of dimethylamine and other secondary amines. The formation of NDMA during chlorination may involve the slow formation of 1,1-dimethylhydrazine by the reaction of monochloramine and dimethylamine followed by its rapid oxidation to NDMA and other products including dimethylcyanamide and dimethylformamide. Other pathways also lead to NDMA formation during chlorination such as the reaction of sodium hypochlorite with dimethylamine. However, the rate of NDMA formation is approximately an order of magnitude slower than that observed when monochloramine reacts with dimethylamine. The reaction exhibits a strong pH dependence due to competing reactions. It may be possible to reduce NDMA formation during chlorination by removing ammonia prior to chlorination, by breakpoint chlorination, or by avoidance of the use of monochloramine for drinking water disinfection.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/es010684q</identifier><identifier>PMID: 11878371</identifier><identifier>CODEN: ESTHAG</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Applied sciences ; Chloramines - chemistry ; Chlorine ; Dimethylamines - chemistry ; Disinfectants - chemistry ; Drinking water and swimming-pool water. Desalination ; Exact sciences and technology ; General purification processes ; monochloramine ; Nitroso Compounds - analysis ; Nitroso Compounds - chemistry ; nitrosodimethylamine ; Pollution ; Wastewaters ; Water Purification ; Water Supply ; Water treatment ; Water treatment and pollution</subject><ispartof>Environmental science &amp; technology, 2002-02, Vol.36 (4), p.588-595</ispartof><rights>Copyright © 2002 American Chemical Society</rights><rights>2002 INIST-CNRS</rights><rights>Copyright American Chemical Society Feb 15, 2002</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a534t-a9a2f3684d9dae8b17bfd06fbbc553dcb1497f1c0dfffab68acdc0cc9b9429e23</citedby><cites>FETCH-LOGICAL-a534t-a9a2f3684d9dae8b17bfd06fbbc553dcb1497f1c0dfffab68acdc0cc9b9429e23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/es010684q$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/es010684q$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=13504077$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11878371$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mitch, William A</creatorcontrib><creatorcontrib>Sedlak, David L</creatorcontrib><title>Formation of N-Nitrosodimethylamine (NDMA) from Dimethylamine during Chlorination</title><title>Environmental science &amp; technology</title><addtitle>Environ. Sci. Technol</addtitle><description>Chlorine disinfection of secondary wastewater effluent and drinking water can result in the production of the potent carcinogen N-nitrosodimethylamine (NDMA) at concentra tions of approximately 100 and 10 parts per trillion (ng/L), respectively. Laboratory experiments with potential NDMA precursors indicate that NDMA formation can form during the chlorination of dimethylamine and other secondary amines. The formation of NDMA during chlorination may involve the slow formation of 1,1-dimethylhydrazine by the reaction of monochloramine and dimethylamine followed by its rapid oxidation to NDMA and other products including dimethylcyanamide and dimethylformamide. Other pathways also lead to NDMA formation during chlorination such as the reaction of sodium hypochlorite with dimethylamine. However, the rate of NDMA formation is approximately an order of magnitude slower than that observed when monochloramine reacts with dimethylamine. The reaction exhibits a strong pH dependence due to competing reactions. It may be possible to reduce NDMA formation during chlorination by removing ammonia prior to chlorination, by breakpoint chlorination, or by avoidance of the use of monochloramine for drinking water disinfection.</description><subject>Applied sciences</subject><subject>Chloramines - chemistry</subject><subject>Chlorine</subject><subject>Dimethylamines - chemistry</subject><subject>Disinfectants - chemistry</subject><subject>Drinking water and swimming-pool water. Desalination</subject><subject>Exact sciences and technology</subject><subject>General purification processes</subject><subject>monochloramine</subject><subject>Nitroso Compounds - analysis</subject><subject>Nitroso Compounds - chemistry</subject><subject>nitrosodimethylamine</subject><subject>Pollution</subject><subject>Wastewaters</subject><subject>Water Purification</subject><subject>Water Supply</subject><subject>Water treatment</subject><subject>Water treatment and pollution</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0UtP3DAQAGALtYLtwqF_oIoqtSqH0Jk4zuOIdksL2m5BQMXNcvwohiQGO5HKv69hV6zaHrjYlubTeB6EvEU4QMjwsw6AUFT5_RaZIMsgZRXDV2QCgDStaXG1Q96EcAMAGYVqm-wgVmVFS5yQsyPnOzFY1yfOJMt0aQfvglO208P1Qys62-vk03L-_XA_Md51yfyviBq97X8ls-vWxcdTnl3y2og26L31PSWXR18uZt_SxY-vx7PDRSoYzYdU1CIzNBataiV01WDZGAWFaRrJGFWywbwuDUpQxhjRFJWQSoKUdVPnWa0zOiUfV3nvvLsfdRh4Z4PUbSt67cbAsUBa5_F4EUaUVYxG-P4feONG38cmeJwbZliWj2h_hWScU_Da8DtvO-EfOAJ_3AZ_3ka079YJx6bTaiPX44_gwxqIIEVrvOilDRtHGeQQf52SdOVsGPTv57jwt7woacn4xek5X_zMZyfzq4KfbvIKGTZN_F_gHyevrVk</recordid><startdate>20020215</startdate><enddate>20020215</enddate><creator>Mitch, William A</creator><creator>Sedlak, David L</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><scope>7QH</scope><scope>7TV</scope><scope>7UA</scope></search><sort><creationdate>20020215</creationdate><title>Formation of N-Nitrosodimethylamine (NDMA) from Dimethylamine during Chlorination</title><author>Mitch, William A ; Sedlak, David L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a534t-a9a2f3684d9dae8b17bfd06fbbc553dcb1497f1c0dfffab68acdc0cc9b9429e23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Applied sciences</topic><topic>Chloramines - chemistry</topic><topic>Chlorine</topic><topic>Dimethylamines - chemistry</topic><topic>Disinfectants - chemistry</topic><topic>Drinking water and swimming-pool water. Desalination</topic><topic>Exact sciences and technology</topic><topic>General purification processes</topic><topic>monochloramine</topic><topic>Nitroso Compounds - analysis</topic><topic>Nitroso Compounds - chemistry</topic><topic>nitrosodimethylamine</topic><topic>Pollution</topic><topic>Wastewaters</topic><topic>Water Purification</topic><topic>Water Supply</topic><topic>Water treatment</topic><topic>Water treatment and pollution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mitch, William A</creatorcontrib><creatorcontrib>Sedlak, David L</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>Aqualine</collection><collection>Pollution Abstracts</collection><collection>Water Resources Abstracts</collection><jtitle>Environmental science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mitch, William A</au><au>Sedlak, David L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Formation of N-Nitrosodimethylamine (NDMA) from Dimethylamine during Chlorination</atitle><jtitle>Environmental science &amp; technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2002-02-15</date><risdate>2002</risdate><volume>36</volume><issue>4</issue><spage>588</spage><epage>595</epage><pages>588-595</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><coden>ESTHAG</coden><abstract>Chlorine disinfection of secondary wastewater effluent and drinking water can result in the production of the potent carcinogen N-nitrosodimethylamine (NDMA) at concentra tions of approximately 100 and 10 parts per trillion (ng/L), respectively. Laboratory experiments with potential NDMA precursors indicate that NDMA formation can form during the chlorination of dimethylamine and other secondary amines. The formation of NDMA during chlorination may involve the slow formation of 1,1-dimethylhydrazine by the reaction of monochloramine and dimethylamine followed by its rapid oxidation to NDMA and other products including dimethylcyanamide and dimethylformamide. Other pathways also lead to NDMA formation during chlorination such as the reaction of sodium hypochlorite with dimethylamine. However, the rate of NDMA formation is approximately an order of magnitude slower than that observed when monochloramine reacts with dimethylamine. The reaction exhibits a strong pH dependence due to competing reactions. It may be possible to reduce NDMA formation during chlorination by removing ammonia prior to chlorination, by breakpoint chlorination, or by avoidance of the use of monochloramine for drinking water disinfection.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>11878371</pmid><doi>10.1021/es010684q</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0013-936X
ispartof Environmental science & technology, 2002-02, Vol.36 (4), p.588-595
issn 0013-936X
1520-5851
language eng
recordid cdi_proquest_miscellaneous_16139461
source MEDLINE; American Chemical Society Journals
subjects Applied sciences
Chloramines - chemistry
Chlorine
Dimethylamines - chemistry
Disinfectants - chemistry
Drinking water and swimming-pool water. Desalination
Exact sciences and technology
General purification processes
monochloramine
Nitroso Compounds - analysis
Nitroso Compounds - chemistry
nitrosodimethylamine
Pollution
Wastewaters
Water Purification
Water Supply
Water treatment
Water treatment and pollution
title Formation of N-Nitrosodimethylamine (NDMA) from Dimethylamine during Chlorination
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T18%3A39%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Formation%20of%20N-Nitrosodimethylamine%20(NDMA)%20from%20Dimethylamine%20during%20Chlorination&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Mitch,%20William%20A&rft.date=2002-02-15&rft.volume=36&rft.issue=4&rft.spage=588&rft.epage=595&rft.pages=588-595&rft.issn=0013-936X&rft.eissn=1520-5851&rft.coden=ESTHAG&rft_id=info:doi/10.1021/es010684q&rft_dat=%3Cproquest_cross%3E109774634%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=230121773&rft_id=info:pmid/11878371&rfr_iscdi=true