Formation of N-Nitrosodimethylamine (NDMA) from Dimethylamine during Chlorination
Chlorine disinfection of secondary wastewater effluent and drinking water can result in the production of the potent carcinogen N-nitrosodimethylamine (NDMA) at concentra tions of approximately 100 and 10 parts per trillion (ng/L), respectively. Laboratory experiments with potential NDMA precursors...
Gespeichert in:
Veröffentlicht in: | Environmental science & technology 2002-02, Vol.36 (4), p.588-595 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 595 |
---|---|
container_issue | 4 |
container_start_page | 588 |
container_title | Environmental science & technology |
container_volume | 36 |
creator | Mitch, William A Sedlak, David L |
description | Chlorine disinfection of secondary wastewater effluent and drinking water can result in the production of the potent carcinogen N-nitrosodimethylamine (NDMA) at concentra tions of approximately 100 and 10 parts per trillion (ng/L), respectively. Laboratory experiments with potential NDMA precursors indicate that NDMA formation can form during the chlorination of dimethylamine and other secondary amines. The formation of NDMA during chlorination may involve the slow formation of 1,1-dimethylhydrazine by the reaction of monochloramine and dimethylamine followed by its rapid oxidation to NDMA and other products including dimethylcyanamide and dimethylformamide. Other pathways also lead to NDMA formation during chlorination such as the reaction of sodium hypochlorite with dimethylamine. However, the rate of NDMA formation is approximately an order of magnitude slower than that observed when monochloramine reacts with dimethylamine. The reaction exhibits a strong pH dependence due to competing reactions. It may be possible to reduce NDMA formation during chlorination by removing ammonia prior to chlorination, by breakpoint chlorination, or by avoidance of the use of monochloramine for drinking water disinfection. |
doi_str_mv | 10.1021/es010684q |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_16139461</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>109774634</sourcerecordid><originalsourceid>FETCH-LOGICAL-a534t-a9a2f3684d9dae8b17bfd06fbbc553dcb1497f1c0dfffab68acdc0cc9b9429e23</originalsourceid><addsrcrecordid>eNqF0UtP3DAQAGALtYLtwqF_oIoqtSqH0Jk4zuOIdksL2m5BQMXNcvwohiQGO5HKv69hV6zaHrjYlubTeB6EvEU4QMjwsw6AUFT5_RaZIMsgZRXDV2QCgDStaXG1Q96EcAMAGYVqm-wgVmVFS5yQsyPnOzFY1yfOJMt0aQfvglO208P1Qys62-vk03L-_XA_Md51yfyviBq97X8ls-vWxcdTnl3y2og26L31PSWXR18uZt_SxY-vx7PDRSoYzYdU1CIzNBataiV01WDZGAWFaRrJGFWywbwuDUpQxhjRFJWQSoKUdVPnWa0zOiUfV3nvvLsfdRh4Z4PUbSt67cbAsUBa5_F4EUaUVYxG-P4feONG38cmeJwbZliWj2h_hWScU_Da8DtvO-EfOAJ_3AZ_3ka079YJx6bTaiPX44_gwxqIIEVrvOilDRtHGeQQf52SdOVsGPTv57jwt7woacn4xek5X_zMZyfzq4KfbvIKGTZN_F_gHyevrVk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>230121773</pqid></control><display><type>article</type><title>Formation of N-Nitrosodimethylamine (NDMA) from Dimethylamine during Chlorination</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Mitch, William A ; Sedlak, David L</creator><creatorcontrib>Mitch, William A ; Sedlak, David L</creatorcontrib><description>Chlorine disinfection of secondary wastewater effluent and drinking water can result in the production of the potent carcinogen N-nitrosodimethylamine (NDMA) at concentra tions of approximately 100 and 10 parts per trillion (ng/L), respectively. Laboratory experiments with potential NDMA precursors indicate that NDMA formation can form during the chlorination of dimethylamine and other secondary amines. The formation of NDMA during chlorination may involve the slow formation of 1,1-dimethylhydrazine by the reaction of monochloramine and dimethylamine followed by its rapid oxidation to NDMA and other products including dimethylcyanamide and dimethylformamide. Other pathways also lead to NDMA formation during chlorination such as the reaction of sodium hypochlorite with dimethylamine. However, the rate of NDMA formation is approximately an order of magnitude slower than that observed when monochloramine reacts with dimethylamine. The reaction exhibits a strong pH dependence due to competing reactions. It may be possible to reduce NDMA formation during chlorination by removing ammonia prior to chlorination, by breakpoint chlorination, or by avoidance of the use of monochloramine for drinking water disinfection.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/es010684q</identifier><identifier>PMID: 11878371</identifier><identifier>CODEN: ESTHAG</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Applied sciences ; Chloramines - chemistry ; Chlorine ; Dimethylamines - chemistry ; Disinfectants - chemistry ; Drinking water and swimming-pool water. Desalination ; Exact sciences and technology ; General purification processes ; monochloramine ; Nitroso Compounds - analysis ; Nitroso Compounds - chemistry ; nitrosodimethylamine ; Pollution ; Wastewaters ; Water Purification ; Water Supply ; Water treatment ; Water treatment and pollution</subject><ispartof>Environmental science & technology, 2002-02, Vol.36 (4), p.588-595</ispartof><rights>Copyright © 2002 American Chemical Society</rights><rights>2002 INIST-CNRS</rights><rights>Copyright American Chemical Society Feb 15, 2002</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a534t-a9a2f3684d9dae8b17bfd06fbbc553dcb1497f1c0dfffab68acdc0cc9b9429e23</citedby><cites>FETCH-LOGICAL-a534t-a9a2f3684d9dae8b17bfd06fbbc553dcb1497f1c0dfffab68acdc0cc9b9429e23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/es010684q$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/es010684q$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=13504077$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11878371$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mitch, William A</creatorcontrib><creatorcontrib>Sedlak, David L</creatorcontrib><title>Formation of N-Nitrosodimethylamine (NDMA) from Dimethylamine during Chlorination</title><title>Environmental science & technology</title><addtitle>Environ. Sci. Technol</addtitle><description>Chlorine disinfection of secondary wastewater effluent and drinking water can result in the production of the potent carcinogen N-nitrosodimethylamine (NDMA) at concentra tions of approximately 100 and 10 parts per trillion (ng/L), respectively. Laboratory experiments with potential NDMA precursors indicate that NDMA formation can form during the chlorination of dimethylamine and other secondary amines. The formation of NDMA during chlorination may involve the slow formation of 1,1-dimethylhydrazine by the reaction of monochloramine and dimethylamine followed by its rapid oxidation to NDMA and other products including dimethylcyanamide and dimethylformamide. Other pathways also lead to NDMA formation during chlorination such as the reaction of sodium hypochlorite with dimethylamine. However, the rate of NDMA formation is approximately an order of magnitude slower than that observed when monochloramine reacts with dimethylamine. The reaction exhibits a strong pH dependence due to competing reactions. It may be possible to reduce NDMA formation during chlorination by removing ammonia prior to chlorination, by breakpoint chlorination, or by avoidance of the use of monochloramine for drinking water disinfection.</description><subject>Applied sciences</subject><subject>Chloramines - chemistry</subject><subject>Chlorine</subject><subject>Dimethylamines - chemistry</subject><subject>Disinfectants - chemistry</subject><subject>Drinking water and swimming-pool water. Desalination</subject><subject>Exact sciences and technology</subject><subject>General purification processes</subject><subject>monochloramine</subject><subject>Nitroso Compounds - analysis</subject><subject>Nitroso Compounds - chemistry</subject><subject>nitrosodimethylamine</subject><subject>Pollution</subject><subject>Wastewaters</subject><subject>Water Purification</subject><subject>Water Supply</subject><subject>Water treatment</subject><subject>Water treatment and pollution</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0UtP3DAQAGALtYLtwqF_oIoqtSqH0Jk4zuOIdksL2m5BQMXNcvwohiQGO5HKv69hV6zaHrjYlubTeB6EvEU4QMjwsw6AUFT5_RaZIMsgZRXDV2QCgDStaXG1Q96EcAMAGYVqm-wgVmVFS5yQsyPnOzFY1yfOJMt0aQfvglO208P1Qys62-vk03L-_XA_Md51yfyviBq97X8ls-vWxcdTnl3y2og26L31PSWXR18uZt_SxY-vx7PDRSoYzYdU1CIzNBataiV01WDZGAWFaRrJGFWywbwuDUpQxhjRFJWQSoKUdVPnWa0zOiUfV3nvvLsfdRh4Z4PUbSt67cbAsUBa5_F4EUaUVYxG-P4feONG38cmeJwbZliWj2h_hWScU_Da8DtvO-EfOAJ_3AZ_3ka079YJx6bTaiPX44_gwxqIIEVrvOilDRtHGeQQf52SdOVsGPTv57jwt7woacn4xek5X_zMZyfzq4KfbvIKGTZN_F_gHyevrVk</recordid><startdate>20020215</startdate><enddate>20020215</enddate><creator>Mitch, William A</creator><creator>Sedlak, David L</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><scope>7QH</scope><scope>7TV</scope><scope>7UA</scope></search><sort><creationdate>20020215</creationdate><title>Formation of N-Nitrosodimethylamine (NDMA) from Dimethylamine during Chlorination</title><author>Mitch, William A ; Sedlak, David L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a534t-a9a2f3684d9dae8b17bfd06fbbc553dcb1497f1c0dfffab68acdc0cc9b9429e23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Applied sciences</topic><topic>Chloramines - chemistry</topic><topic>Chlorine</topic><topic>Dimethylamines - chemistry</topic><topic>Disinfectants - chemistry</topic><topic>Drinking water and swimming-pool water. Desalination</topic><topic>Exact sciences and technology</topic><topic>General purification processes</topic><topic>monochloramine</topic><topic>Nitroso Compounds - analysis</topic><topic>Nitroso Compounds - chemistry</topic><topic>nitrosodimethylamine</topic><topic>Pollution</topic><topic>Wastewaters</topic><topic>Water Purification</topic><topic>Water Supply</topic><topic>Water treatment</topic><topic>Water treatment and pollution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mitch, William A</creatorcontrib><creatorcontrib>Sedlak, David L</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>Aqualine</collection><collection>Pollution Abstracts</collection><collection>Water Resources Abstracts</collection><jtitle>Environmental science & technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mitch, William A</au><au>Sedlak, David L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Formation of N-Nitrosodimethylamine (NDMA) from Dimethylamine during Chlorination</atitle><jtitle>Environmental science & technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2002-02-15</date><risdate>2002</risdate><volume>36</volume><issue>4</issue><spage>588</spage><epage>595</epage><pages>588-595</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><coden>ESTHAG</coden><abstract>Chlorine disinfection of secondary wastewater effluent and drinking water can result in the production of the potent carcinogen N-nitrosodimethylamine (NDMA) at concentra tions of approximately 100 and 10 parts per trillion (ng/L), respectively. Laboratory experiments with potential NDMA precursors indicate that NDMA formation can form during the chlorination of dimethylamine and other secondary amines. The formation of NDMA during chlorination may involve the slow formation of 1,1-dimethylhydrazine by the reaction of monochloramine and dimethylamine followed by its rapid oxidation to NDMA and other products including dimethylcyanamide and dimethylformamide. Other pathways also lead to NDMA formation during chlorination such as the reaction of sodium hypochlorite with dimethylamine. However, the rate of NDMA formation is approximately an order of magnitude slower than that observed when monochloramine reacts with dimethylamine. The reaction exhibits a strong pH dependence due to competing reactions. It may be possible to reduce NDMA formation during chlorination by removing ammonia prior to chlorination, by breakpoint chlorination, or by avoidance of the use of monochloramine for drinking water disinfection.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>11878371</pmid><doi>10.1021/es010684q</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-936X |
ispartof | Environmental science & technology, 2002-02, Vol.36 (4), p.588-595 |
issn | 0013-936X 1520-5851 |
language | eng |
recordid | cdi_proquest_miscellaneous_16139461 |
source | MEDLINE; American Chemical Society Journals |
subjects | Applied sciences Chloramines - chemistry Chlorine Dimethylamines - chemistry Disinfectants - chemistry Drinking water and swimming-pool water. Desalination Exact sciences and technology General purification processes monochloramine Nitroso Compounds - analysis Nitroso Compounds - chemistry nitrosodimethylamine Pollution Wastewaters Water Purification Water Supply Water treatment Water treatment and pollution |
title | Formation of N-Nitrosodimethylamine (NDMA) from Dimethylamine during Chlorination |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T18%3A39%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Formation%20of%20N-Nitrosodimethylamine%20(NDMA)%20from%20Dimethylamine%20during%20Chlorination&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Mitch,%20William%20A&rft.date=2002-02-15&rft.volume=36&rft.issue=4&rft.spage=588&rft.epage=595&rft.pages=588-595&rft.issn=0013-936X&rft.eissn=1520-5851&rft.coden=ESTHAG&rft_id=info:doi/10.1021/es010684q&rft_dat=%3Cproquest_cross%3E109774634%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=230121773&rft_id=info:pmid/11878371&rfr_iscdi=true |