A macrophage-dominant PI3K isoform controls hypoxia-induced HIF1α and HIF2α stability and tumor growth, angiogenesis, and metastasis
Tumor growth, progression, and response to the hypoxic tumor microenvironment involve the action of hypoxia-inducible transcription factors, HIF1 and HIF2. HIF is a heterodimeric transcription factor containing an inducible HIFα subunit and a constitutively expressed HIFβ subunit. The signaling path...
Gespeichert in:
Veröffentlicht in: | Molecular cancer research 2014-10, Vol.12 (10), p.1520-1531 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Tumor growth, progression, and response to the hypoxic tumor microenvironment involve the action of hypoxia-inducible transcription factors, HIF1 and HIF2. HIF is a heterodimeric transcription factor containing an inducible HIFα subunit and a constitutively expressed HIFβ subunit. The signaling pathways operational in macrophages regulating hypoxia-induced HIFα stabilization remain the subject of intense investigation. Here, it was discovered that the PTEN/PI3K/AKT signaling axis controls hypoxia-induced HIF1α (HIF1A) and HIF2α (EPAS1) stability in macrophages. Using genetic mouse models and pan-PI3K as well as isoform-specific inhibitors, inhibition of the PI3K/AKT pathway blocked the accumulation of HIFα protein and its primary transcriptional target VEGF in response to hypoxia. Moreover, blocking the PI3K/AKT signaling axis promoted the hypoxic degradation of HIFα via the 26S proteasome. Mechanistically, a macrophage-dominant PI3K isoform (p110γ) directed tumor growth, angiogenesis, metastasis, and the HIFα/VEGF axis. Moreover, a pan-PI3K inhibitor (SF1126) blocked tumor-induced angiogenesis and inhibited VEGF and other proangiogenic factors secreted by macrophages. These data define a novel molecular mechanism by which PTEN/PI3K/AKT regulates the proteasome-dependent stability of HIFα under hypoxic conditions, a signaling pathway in macrophages that controls tumor-induced angiogenesis and metastasis.
This study indicates that PI3K inhibitors are excellent candidates for the treatment of cancers where macrophages promote tumor progression. |
---|---|
ISSN: | 1541-7786 1557-3125 |
DOI: | 10.1158/1541-7786.MCR-13-0682 |