GFS9/TT9 contributes to intracellular membrane trafficking and flavonoid accumulation in Arabidopsis thaliana

Flavonoids are the most important pigments for the coloration of flowers and seeds. In plant cells, flavonoids are synthesized by a multi‐enzyme complex located on the cytosolic surface of the endoplasmic reticulum, and they accumulate in vacuoles. Two non‐exclusive pathways have been proposed to me...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Plant journal : for cell and molecular biology 2014-11, Vol.80 (3), p.410-423
Hauptverfasser: Ichino, Takuji, Fuji, Kentaro, Ueda, Haruko, Takahashi, Hideyuki, Koumoto, Yasuko, Takagi, Junpei, Tamura, Kentaro, Sasaki, Ryosuke, Aoki, Koh, Shimada, Tomoo, Hara‐Nishimura, Ikuko
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 423
container_issue 3
container_start_page 410
container_title The Plant journal : for cell and molecular biology
container_volume 80
creator Ichino, Takuji
Fuji, Kentaro
Ueda, Haruko
Takahashi, Hideyuki
Koumoto, Yasuko
Takagi, Junpei
Tamura, Kentaro
Sasaki, Ryosuke
Aoki, Koh
Shimada, Tomoo
Hara‐Nishimura, Ikuko
description Flavonoids are the most important pigments for the coloration of flowers and seeds. In plant cells, flavonoids are synthesized by a multi‐enzyme complex located on the cytosolic surface of the endoplasmic reticulum, and they accumulate in vacuoles. Two non‐exclusive pathways have been proposed to mediate flavonoid transport to vacuoles: the membrane transporter‐mediated pathway and the vesicle trafficking‐mediated pathway. No molecules involved in the vesicle trafficking‐mediated pathway have been identified, however. Here, we show that a membrane trafficking factor, GFS9, has a role in flavonoid accumulation in the vacuole. We screened a library of Arabidopsis thaliana mutants with defects in vesicle trafficking, and isolated the gfs9 mutant with abnormal pale tan‐colored seeds caused by low flavonoid accumulation levels. gfs9 is allelic to the unidentified transparent testa mutant tt9. The responsible gene for these phenotypes encodes a previously uncharacterized protein containing a region that is conserved among eukaryotes. GFS9 is a peripheral membrane protein localized at the Golgi apparatus. GFS9 deficiency causes several membrane trafficking defects, including the mis‐sorting of vacuolar proteins, vacuole fragmentation, the aggregation of enlarged vesicles, and the proliferation of autophagosome‐like structures. These results suggest that GFS9 is required for vacuolar development through membrane fusion at vacuoles. Our findings introduce a concept that plants use GFS9‐mediated membrane trafficking machinery for delivery of not only proteins but also phytochemicals, such as flavonoids, to vacuoles.
doi_str_mv 10.1111/tpj.12637
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1612986599</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1612986599</sourcerecordid><originalsourceid>FETCH-LOGICAL-f4747-8bf601c5cb25ef7d5772d3fcc45f65667abd416d8adada2711de085ad4228ad03</originalsourceid><addsrcrecordid>eNpdkU1v1DAQhi0EokvhwB8AS1y4pOtx_LE5VhUtoEogdStxsyb-KF6SeLETUP897m7hgH3wePy8Y49fQl4DO4M61vN-dwZctfoJWUGrZNNC--0pWbFOsUYL4CfkRSk7xkC3SjwnJ1wCqE50KzJeXd506-22ozZNc479MvtC50Rj3aH1w7AMmOnoxz7j5GlNhhDtjzjdUZwcDQP-SlOKjqK1y1jhOaapqul5xj66tC-x1vuOQ8QJX5JnAYfiXz2up-T28sP24mNz_eXq08X5dROEFrrZ9EExsNL2XPqgndSauzZYK2RQUimNvROg3AZdnVwDOM82Ep3gvOZYe0reH-vuc_q5-DKbMZaHZmoLaSkGFPBuo2TXVfTdf-guLXmqrztQXHIteKXePFJLP3pn9jmOmO_N34-swPoI_I6Dv_93Dsw8OGSqQ-bgkNl-_XwIquLtUREwGbzLsZjbG85AMsY4U_XSP2wIjPk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1612252742</pqid></control><display><type>article</type><title>GFS9/TT9 contributes to intracellular membrane trafficking and flavonoid accumulation in Arabidopsis thaliana</title><source>Wiley Free Content</source><source>MEDLINE</source><source>IngentaConnect Free/Open Access Journals</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Ichino, Takuji ; Fuji, Kentaro ; Ueda, Haruko ; Takahashi, Hideyuki ; Koumoto, Yasuko ; Takagi, Junpei ; Tamura, Kentaro ; Sasaki, Ryosuke ; Aoki, Koh ; Shimada, Tomoo ; Hara‐Nishimura, Ikuko</creator><creatorcontrib>Ichino, Takuji ; Fuji, Kentaro ; Ueda, Haruko ; Takahashi, Hideyuki ; Koumoto, Yasuko ; Takagi, Junpei ; Tamura, Kentaro ; Sasaki, Ryosuke ; Aoki, Koh ; Shimada, Tomoo ; Hara‐Nishimura, Ikuko</creatorcontrib><description>Flavonoids are the most important pigments for the coloration of flowers and seeds. In plant cells, flavonoids are synthesized by a multi‐enzyme complex located on the cytosolic surface of the endoplasmic reticulum, and they accumulate in vacuoles. Two non‐exclusive pathways have been proposed to mediate flavonoid transport to vacuoles: the membrane transporter‐mediated pathway and the vesicle trafficking‐mediated pathway. No molecules involved in the vesicle trafficking‐mediated pathway have been identified, however. Here, we show that a membrane trafficking factor, GFS9, has a role in flavonoid accumulation in the vacuole. We screened a library of Arabidopsis thaliana mutants with defects in vesicle trafficking, and isolated the gfs9 mutant with abnormal pale tan‐colored seeds caused by low flavonoid accumulation levels. gfs9 is allelic to the unidentified transparent testa mutant tt9. The responsible gene for these phenotypes encodes a previously uncharacterized protein containing a region that is conserved among eukaryotes. GFS9 is a peripheral membrane protein localized at the Golgi apparatus. GFS9 deficiency causes several membrane trafficking defects, including the mis‐sorting of vacuolar proteins, vacuole fragmentation, the aggregation of enlarged vesicles, and the proliferation of autophagosome‐like structures. These results suggest that GFS9 is required for vacuolar development through membrane fusion at vacuoles. Our findings introduce a concept that plants use GFS9‐mediated membrane trafficking machinery for delivery of not only proteins but also phytochemicals, such as flavonoids, to vacuoles.</description><identifier>ISSN: 0960-7412</identifier><identifier>EISSN: 1365-313X</identifier><identifier>DOI: 10.1111/tpj.12637</identifier><identifier>PMID: 25116949</identifier><language>eng</language><publisher>England: Blackwell Scientific Publishers and BIOS Scientific Publishers in association with the Society for Experimental Biology</publisher><subject>Arabidopsis - genetics ; Arabidopsis - physiology ; Arabidopsis - ultrastructure ; Arabidopsis Proteins - genetics ; Arabidopsis Proteins - metabolism ; Arabidopsis thaliana ; Biological Transport ; color ; endoplasmic reticulum ; Endoplasmic Reticulum - metabolism ; Endoplasmic Reticulum - ultrastructure ; eukaryotic cells ; flavonoid ; flavonoids ; Flavonoids - metabolism ; flowers ; Flowers - genetics ; Flowers - physiology ; Flowers - ultrastructure ; genes ; Genotype &amp; phenotype ; GFS9 ; Golgi apparatus ; Golgi Apparatus - metabolism ; Golgi Apparatus - ultrastructure ; Intracellular Membranes - metabolism ; membrane fusion ; membrane proteins ; Membrane Proteins - genetics ; Membrane Proteins - metabolism ; Membranes ; Metabolites ; mutants ; Phenotype ; physiological transport ; Phytochemicals ; Pigments ; Plant biology ; Seeds ; Seeds - genetics ; Seeds - physiology ; Seeds - ultrastructure ; testa ; transparent testa ; vacuole ; vacuoles ; Vacuoles - metabolism ; Vacuoles - ultrastructure ; vesicle trafficking</subject><ispartof>The Plant journal : for cell and molecular biology, 2014-11, Vol.80 (3), p.410-423</ispartof><rights>2014 The Authors The Plant Journal © 2014 John Wiley &amp; Sons Ltd</rights><rights>2014 The Authors The Plant Journal © 2014 John Wiley &amp; Sons Ltd.</rights><rights>Copyright © 2014 John Wiley &amp; Sons Ltd and the Society for Experimental Biology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Ftpj.12637$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Ftpj.12637$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25116949$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ichino, Takuji</creatorcontrib><creatorcontrib>Fuji, Kentaro</creatorcontrib><creatorcontrib>Ueda, Haruko</creatorcontrib><creatorcontrib>Takahashi, Hideyuki</creatorcontrib><creatorcontrib>Koumoto, Yasuko</creatorcontrib><creatorcontrib>Takagi, Junpei</creatorcontrib><creatorcontrib>Tamura, Kentaro</creatorcontrib><creatorcontrib>Sasaki, Ryosuke</creatorcontrib><creatorcontrib>Aoki, Koh</creatorcontrib><creatorcontrib>Shimada, Tomoo</creatorcontrib><creatorcontrib>Hara‐Nishimura, Ikuko</creatorcontrib><title>GFS9/TT9 contributes to intracellular membrane trafficking and flavonoid accumulation in Arabidopsis thaliana</title><title>The Plant journal : for cell and molecular biology</title><addtitle>Plant J</addtitle><description>Flavonoids are the most important pigments for the coloration of flowers and seeds. In plant cells, flavonoids are synthesized by a multi‐enzyme complex located on the cytosolic surface of the endoplasmic reticulum, and they accumulate in vacuoles. Two non‐exclusive pathways have been proposed to mediate flavonoid transport to vacuoles: the membrane transporter‐mediated pathway and the vesicle trafficking‐mediated pathway. No molecules involved in the vesicle trafficking‐mediated pathway have been identified, however. Here, we show that a membrane trafficking factor, GFS9, has a role in flavonoid accumulation in the vacuole. We screened a library of Arabidopsis thaliana mutants with defects in vesicle trafficking, and isolated the gfs9 mutant with abnormal pale tan‐colored seeds caused by low flavonoid accumulation levels. gfs9 is allelic to the unidentified transparent testa mutant tt9. The responsible gene for these phenotypes encodes a previously uncharacterized protein containing a region that is conserved among eukaryotes. GFS9 is a peripheral membrane protein localized at the Golgi apparatus. GFS9 deficiency causes several membrane trafficking defects, including the mis‐sorting of vacuolar proteins, vacuole fragmentation, the aggregation of enlarged vesicles, and the proliferation of autophagosome‐like structures. These results suggest that GFS9 is required for vacuolar development through membrane fusion at vacuoles. Our findings introduce a concept that plants use GFS9‐mediated membrane trafficking machinery for delivery of not only proteins but also phytochemicals, such as flavonoids, to vacuoles.</description><subject>Arabidopsis - genetics</subject><subject>Arabidopsis - physiology</subject><subject>Arabidopsis - ultrastructure</subject><subject>Arabidopsis Proteins - genetics</subject><subject>Arabidopsis Proteins - metabolism</subject><subject>Arabidopsis thaliana</subject><subject>Biological Transport</subject><subject>color</subject><subject>endoplasmic reticulum</subject><subject>Endoplasmic Reticulum - metabolism</subject><subject>Endoplasmic Reticulum - ultrastructure</subject><subject>eukaryotic cells</subject><subject>flavonoid</subject><subject>flavonoids</subject><subject>Flavonoids - metabolism</subject><subject>flowers</subject><subject>Flowers - genetics</subject><subject>Flowers - physiology</subject><subject>Flowers - ultrastructure</subject><subject>genes</subject><subject>Genotype &amp; phenotype</subject><subject>GFS9</subject><subject>Golgi apparatus</subject><subject>Golgi Apparatus - metabolism</subject><subject>Golgi Apparatus - ultrastructure</subject><subject>Intracellular Membranes - metabolism</subject><subject>membrane fusion</subject><subject>membrane proteins</subject><subject>Membrane Proteins - genetics</subject><subject>Membrane Proteins - metabolism</subject><subject>Membranes</subject><subject>Metabolites</subject><subject>mutants</subject><subject>Phenotype</subject><subject>physiological transport</subject><subject>Phytochemicals</subject><subject>Pigments</subject><subject>Plant biology</subject><subject>Seeds</subject><subject>Seeds - genetics</subject><subject>Seeds - physiology</subject><subject>Seeds - ultrastructure</subject><subject>testa</subject><subject>transparent testa</subject><subject>vacuole</subject><subject>vacuoles</subject><subject>Vacuoles - metabolism</subject><subject>Vacuoles - ultrastructure</subject><subject>vesicle trafficking</subject><issn>0960-7412</issn><issn>1365-313X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkU1v1DAQhi0EokvhwB8AS1y4pOtx_LE5VhUtoEogdStxsyb-KF6SeLETUP897m7hgH3wePy8Y49fQl4DO4M61vN-dwZctfoJWUGrZNNC--0pWbFOsUYL4CfkRSk7xkC3SjwnJ1wCqE50KzJeXd506-22ozZNc479MvtC50Rj3aH1w7AMmOnoxz7j5GlNhhDtjzjdUZwcDQP-SlOKjqK1y1jhOaapqul5xj66tC-x1vuOQ8QJX5JnAYfiXz2up-T28sP24mNz_eXq08X5dROEFrrZ9EExsNL2XPqgndSauzZYK2RQUimNvROg3AZdnVwDOM82Ep3gvOZYe0reH-vuc_q5-DKbMZaHZmoLaSkGFPBuo2TXVfTdf-guLXmqrztQXHIteKXePFJLP3pn9jmOmO_N34-swPoI_I6Dv_93Dsw8OGSqQ-bgkNl-_XwIquLtUREwGbzLsZjbG85AMsY4U_XSP2wIjPk</recordid><startdate>201411</startdate><enddate>201411</enddate><creator>Ichino, Takuji</creator><creator>Fuji, Kentaro</creator><creator>Ueda, Haruko</creator><creator>Takahashi, Hideyuki</creator><creator>Koumoto, Yasuko</creator><creator>Takagi, Junpei</creator><creator>Tamura, Kentaro</creator><creator>Sasaki, Ryosuke</creator><creator>Aoki, Koh</creator><creator>Shimada, Tomoo</creator><creator>Hara‐Nishimura, Ikuko</creator><general>Blackwell Scientific Publishers and BIOS Scientific Publishers in association with the Society for Experimental Biology</general><general>Blackwell Publishing Ltd</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>201411</creationdate><title>GFS9/TT9 contributes to intracellular membrane trafficking and flavonoid accumulation in Arabidopsis thaliana</title><author>Ichino, Takuji ; Fuji, Kentaro ; Ueda, Haruko ; Takahashi, Hideyuki ; Koumoto, Yasuko ; Takagi, Junpei ; Tamura, Kentaro ; Sasaki, Ryosuke ; Aoki, Koh ; Shimada, Tomoo ; Hara‐Nishimura, Ikuko</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-f4747-8bf601c5cb25ef7d5772d3fcc45f65667abd416d8adada2711de085ad4228ad03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Arabidopsis - genetics</topic><topic>Arabidopsis - physiology</topic><topic>Arabidopsis - ultrastructure</topic><topic>Arabidopsis Proteins - genetics</topic><topic>Arabidopsis Proteins - metabolism</topic><topic>Arabidopsis thaliana</topic><topic>Biological Transport</topic><topic>color</topic><topic>endoplasmic reticulum</topic><topic>Endoplasmic Reticulum - metabolism</topic><topic>Endoplasmic Reticulum - ultrastructure</topic><topic>eukaryotic cells</topic><topic>flavonoid</topic><topic>flavonoids</topic><topic>Flavonoids - metabolism</topic><topic>flowers</topic><topic>Flowers - genetics</topic><topic>Flowers - physiology</topic><topic>Flowers - ultrastructure</topic><topic>genes</topic><topic>Genotype &amp; phenotype</topic><topic>GFS9</topic><topic>Golgi apparatus</topic><topic>Golgi Apparatus - metabolism</topic><topic>Golgi Apparatus - ultrastructure</topic><topic>Intracellular Membranes - metabolism</topic><topic>membrane fusion</topic><topic>membrane proteins</topic><topic>Membrane Proteins - genetics</topic><topic>Membrane Proteins - metabolism</topic><topic>Membranes</topic><topic>Metabolites</topic><topic>mutants</topic><topic>Phenotype</topic><topic>physiological transport</topic><topic>Phytochemicals</topic><topic>Pigments</topic><topic>Plant biology</topic><topic>Seeds</topic><topic>Seeds - genetics</topic><topic>Seeds - physiology</topic><topic>Seeds - ultrastructure</topic><topic>testa</topic><topic>transparent testa</topic><topic>vacuole</topic><topic>vacuoles</topic><topic>Vacuoles - metabolism</topic><topic>Vacuoles - ultrastructure</topic><topic>vesicle trafficking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ichino, Takuji</creatorcontrib><creatorcontrib>Fuji, Kentaro</creatorcontrib><creatorcontrib>Ueda, Haruko</creatorcontrib><creatorcontrib>Takahashi, Hideyuki</creatorcontrib><creatorcontrib>Koumoto, Yasuko</creatorcontrib><creatorcontrib>Takagi, Junpei</creatorcontrib><creatorcontrib>Tamura, Kentaro</creatorcontrib><creatorcontrib>Sasaki, Ryosuke</creatorcontrib><creatorcontrib>Aoki, Koh</creatorcontrib><creatorcontrib>Shimada, Tomoo</creatorcontrib><creatorcontrib>Hara‐Nishimura, Ikuko</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The Plant journal : for cell and molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ichino, Takuji</au><au>Fuji, Kentaro</au><au>Ueda, Haruko</au><au>Takahashi, Hideyuki</au><au>Koumoto, Yasuko</au><au>Takagi, Junpei</au><au>Tamura, Kentaro</au><au>Sasaki, Ryosuke</au><au>Aoki, Koh</au><au>Shimada, Tomoo</au><au>Hara‐Nishimura, Ikuko</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>GFS9/TT9 contributes to intracellular membrane trafficking and flavonoid accumulation in Arabidopsis thaliana</atitle><jtitle>The Plant journal : for cell and molecular biology</jtitle><addtitle>Plant J</addtitle><date>2014-11</date><risdate>2014</risdate><volume>80</volume><issue>3</issue><spage>410</spage><epage>423</epage><pages>410-423</pages><issn>0960-7412</issn><eissn>1365-313X</eissn><abstract>Flavonoids are the most important pigments for the coloration of flowers and seeds. In plant cells, flavonoids are synthesized by a multi‐enzyme complex located on the cytosolic surface of the endoplasmic reticulum, and they accumulate in vacuoles. Two non‐exclusive pathways have been proposed to mediate flavonoid transport to vacuoles: the membrane transporter‐mediated pathway and the vesicle trafficking‐mediated pathway. No molecules involved in the vesicle trafficking‐mediated pathway have been identified, however. Here, we show that a membrane trafficking factor, GFS9, has a role in flavonoid accumulation in the vacuole. We screened a library of Arabidopsis thaliana mutants with defects in vesicle trafficking, and isolated the gfs9 mutant with abnormal pale tan‐colored seeds caused by low flavonoid accumulation levels. gfs9 is allelic to the unidentified transparent testa mutant tt9. The responsible gene for these phenotypes encodes a previously uncharacterized protein containing a region that is conserved among eukaryotes. GFS9 is a peripheral membrane protein localized at the Golgi apparatus. GFS9 deficiency causes several membrane trafficking defects, including the mis‐sorting of vacuolar proteins, vacuole fragmentation, the aggregation of enlarged vesicles, and the proliferation of autophagosome‐like structures. These results suggest that GFS9 is required for vacuolar development through membrane fusion at vacuoles. Our findings introduce a concept that plants use GFS9‐mediated membrane trafficking machinery for delivery of not only proteins but also phytochemicals, such as flavonoids, to vacuoles.</abstract><cop>England</cop><pub>Blackwell Scientific Publishers and BIOS Scientific Publishers in association with the Society for Experimental Biology</pub><pmid>25116949</pmid><doi>10.1111/tpj.12637</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0960-7412
ispartof The Plant journal : for cell and molecular biology, 2014-11, Vol.80 (3), p.410-423
issn 0960-7412
1365-313X
language eng
recordid cdi_proquest_miscellaneous_1612986599
source Wiley Free Content; MEDLINE; IngentaConnect Free/Open Access Journals; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Arabidopsis - genetics
Arabidopsis - physiology
Arabidopsis - ultrastructure
Arabidopsis Proteins - genetics
Arabidopsis Proteins - metabolism
Arabidopsis thaliana
Biological Transport
color
endoplasmic reticulum
Endoplasmic Reticulum - metabolism
Endoplasmic Reticulum - ultrastructure
eukaryotic cells
flavonoid
flavonoids
Flavonoids - metabolism
flowers
Flowers - genetics
Flowers - physiology
Flowers - ultrastructure
genes
Genotype & phenotype
GFS9
Golgi apparatus
Golgi Apparatus - metabolism
Golgi Apparatus - ultrastructure
Intracellular Membranes - metabolism
membrane fusion
membrane proteins
Membrane Proteins - genetics
Membrane Proteins - metabolism
Membranes
Metabolites
mutants
Phenotype
physiological transport
Phytochemicals
Pigments
Plant biology
Seeds
Seeds - genetics
Seeds - physiology
Seeds - ultrastructure
testa
transparent testa
vacuole
vacuoles
Vacuoles - metabolism
Vacuoles - ultrastructure
vesicle trafficking
title GFS9/TT9 contributes to intracellular membrane trafficking and flavonoid accumulation in Arabidopsis thaliana
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T04%3A32%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=GFS9/TT9%20contributes%20to%20intracellular%20membrane%20trafficking%20and%20flavonoid%20accumulation%20in%20Arabidopsis%20thaliana&rft.jtitle=The%20Plant%20journal%20:%20for%20cell%20and%20molecular%20biology&rft.au=Ichino,%20Takuji&rft.date=2014-11&rft.volume=80&rft.issue=3&rft.spage=410&rft.epage=423&rft.pages=410-423&rft.issn=0960-7412&rft.eissn=1365-313X&rft_id=info:doi/10.1111/tpj.12637&rft_dat=%3Cproquest_pubme%3E1612986599%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1612252742&rft_id=info:pmid/25116949&rfr_iscdi=true