GFS9/TT9 contributes to intracellular membrane trafficking and flavonoid accumulation in Arabidopsis thaliana
Flavonoids are the most important pigments for the coloration of flowers and seeds. In plant cells, flavonoids are synthesized by a multi‐enzyme complex located on the cytosolic surface of the endoplasmic reticulum, and they accumulate in vacuoles. Two non‐exclusive pathways have been proposed to me...
Gespeichert in:
Veröffentlicht in: | The Plant journal : for cell and molecular biology 2014-11, Vol.80 (3), p.410-423 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 423 |
---|---|
container_issue | 3 |
container_start_page | 410 |
container_title | The Plant journal : for cell and molecular biology |
container_volume | 80 |
creator | Ichino, Takuji Fuji, Kentaro Ueda, Haruko Takahashi, Hideyuki Koumoto, Yasuko Takagi, Junpei Tamura, Kentaro Sasaki, Ryosuke Aoki, Koh Shimada, Tomoo Hara‐Nishimura, Ikuko |
description | Flavonoids are the most important pigments for the coloration of flowers and seeds. In plant cells, flavonoids are synthesized by a multi‐enzyme complex located on the cytosolic surface of the endoplasmic reticulum, and they accumulate in vacuoles. Two non‐exclusive pathways have been proposed to mediate flavonoid transport to vacuoles: the membrane transporter‐mediated pathway and the vesicle trafficking‐mediated pathway. No molecules involved in the vesicle trafficking‐mediated pathway have been identified, however. Here, we show that a membrane trafficking factor, GFS9, has a role in flavonoid accumulation in the vacuole. We screened a library of Arabidopsis thaliana mutants with defects in vesicle trafficking, and isolated the gfs9 mutant with abnormal pale tan‐colored seeds caused by low flavonoid accumulation levels. gfs9 is allelic to the unidentified transparent testa mutant tt9. The responsible gene for these phenotypes encodes a previously uncharacterized protein containing a region that is conserved among eukaryotes. GFS9 is a peripheral membrane protein localized at the Golgi apparatus. GFS9 deficiency causes several membrane trafficking defects, including the mis‐sorting of vacuolar proteins, vacuole fragmentation, the aggregation of enlarged vesicles, and the proliferation of autophagosome‐like structures. These results suggest that GFS9 is required for vacuolar development through membrane fusion at vacuoles. Our findings introduce a concept that plants use GFS9‐mediated membrane trafficking machinery for delivery of not only proteins but also phytochemicals, such as flavonoids, to vacuoles. |
doi_str_mv | 10.1111/tpj.12637 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1612986599</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1612986599</sourcerecordid><originalsourceid>FETCH-LOGICAL-f4747-8bf601c5cb25ef7d5772d3fcc45f65667abd416d8adada2711de085ad4228ad03</originalsourceid><addsrcrecordid>eNpdkU1v1DAQhi0EokvhwB8AS1y4pOtx_LE5VhUtoEogdStxsyb-KF6SeLETUP897m7hgH3wePy8Y49fQl4DO4M61vN-dwZctfoJWUGrZNNC--0pWbFOsUYL4CfkRSk7xkC3SjwnJ1wCqE50KzJeXd506-22ozZNc479MvtC50Rj3aH1w7AMmOnoxz7j5GlNhhDtjzjdUZwcDQP-SlOKjqK1y1jhOaapqul5xj66tC-x1vuOQ8QJX5JnAYfiXz2up-T28sP24mNz_eXq08X5dROEFrrZ9EExsNL2XPqgndSauzZYK2RQUimNvROg3AZdnVwDOM82Ep3gvOZYe0reH-vuc_q5-DKbMZaHZmoLaSkGFPBuo2TXVfTdf-guLXmqrztQXHIteKXePFJLP3pn9jmOmO_N34-swPoI_I6Dv_93Dsw8OGSqQ-bgkNl-_XwIquLtUREwGbzLsZjbG85AMsY4U_XSP2wIjPk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1612252742</pqid></control><display><type>article</type><title>GFS9/TT9 contributes to intracellular membrane trafficking and flavonoid accumulation in Arabidopsis thaliana</title><source>Wiley Free Content</source><source>MEDLINE</source><source>IngentaConnect Free/Open Access Journals</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Ichino, Takuji ; Fuji, Kentaro ; Ueda, Haruko ; Takahashi, Hideyuki ; Koumoto, Yasuko ; Takagi, Junpei ; Tamura, Kentaro ; Sasaki, Ryosuke ; Aoki, Koh ; Shimada, Tomoo ; Hara‐Nishimura, Ikuko</creator><creatorcontrib>Ichino, Takuji ; Fuji, Kentaro ; Ueda, Haruko ; Takahashi, Hideyuki ; Koumoto, Yasuko ; Takagi, Junpei ; Tamura, Kentaro ; Sasaki, Ryosuke ; Aoki, Koh ; Shimada, Tomoo ; Hara‐Nishimura, Ikuko</creatorcontrib><description>Flavonoids are the most important pigments for the coloration of flowers and seeds. In plant cells, flavonoids are synthesized by a multi‐enzyme complex located on the cytosolic surface of the endoplasmic reticulum, and they accumulate in vacuoles. Two non‐exclusive pathways have been proposed to mediate flavonoid transport to vacuoles: the membrane transporter‐mediated pathway and the vesicle trafficking‐mediated pathway. No molecules involved in the vesicle trafficking‐mediated pathway have been identified, however. Here, we show that a membrane trafficking factor, GFS9, has a role in flavonoid accumulation in the vacuole. We screened a library of Arabidopsis thaliana mutants with defects in vesicle trafficking, and isolated the gfs9 mutant with abnormal pale tan‐colored seeds caused by low flavonoid accumulation levels. gfs9 is allelic to the unidentified transparent testa mutant tt9. The responsible gene for these phenotypes encodes a previously uncharacterized protein containing a region that is conserved among eukaryotes. GFS9 is a peripheral membrane protein localized at the Golgi apparatus. GFS9 deficiency causes several membrane trafficking defects, including the mis‐sorting of vacuolar proteins, vacuole fragmentation, the aggregation of enlarged vesicles, and the proliferation of autophagosome‐like structures. These results suggest that GFS9 is required for vacuolar development through membrane fusion at vacuoles. Our findings introduce a concept that plants use GFS9‐mediated membrane trafficking machinery for delivery of not only proteins but also phytochemicals, such as flavonoids, to vacuoles.</description><identifier>ISSN: 0960-7412</identifier><identifier>EISSN: 1365-313X</identifier><identifier>DOI: 10.1111/tpj.12637</identifier><identifier>PMID: 25116949</identifier><language>eng</language><publisher>England: Blackwell Scientific Publishers and BIOS Scientific Publishers in association with the Society for Experimental Biology</publisher><subject>Arabidopsis - genetics ; Arabidopsis - physiology ; Arabidopsis - ultrastructure ; Arabidopsis Proteins - genetics ; Arabidopsis Proteins - metabolism ; Arabidopsis thaliana ; Biological Transport ; color ; endoplasmic reticulum ; Endoplasmic Reticulum - metabolism ; Endoplasmic Reticulum - ultrastructure ; eukaryotic cells ; flavonoid ; flavonoids ; Flavonoids - metabolism ; flowers ; Flowers - genetics ; Flowers - physiology ; Flowers - ultrastructure ; genes ; Genotype & phenotype ; GFS9 ; Golgi apparatus ; Golgi Apparatus - metabolism ; Golgi Apparatus - ultrastructure ; Intracellular Membranes - metabolism ; membrane fusion ; membrane proteins ; Membrane Proteins - genetics ; Membrane Proteins - metabolism ; Membranes ; Metabolites ; mutants ; Phenotype ; physiological transport ; Phytochemicals ; Pigments ; Plant biology ; Seeds ; Seeds - genetics ; Seeds - physiology ; Seeds - ultrastructure ; testa ; transparent testa ; vacuole ; vacuoles ; Vacuoles - metabolism ; Vacuoles - ultrastructure ; vesicle trafficking</subject><ispartof>The Plant journal : for cell and molecular biology, 2014-11, Vol.80 (3), p.410-423</ispartof><rights>2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd</rights><rights>2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.</rights><rights>Copyright © 2014 John Wiley & Sons Ltd and the Society for Experimental Biology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Ftpj.12637$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Ftpj.12637$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25116949$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ichino, Takuji</creatorcontrib><creatorcontrib>Fuji, Kentaro</creatorcontrib><creatorcontrib>Ueda, Haruko</creatorcontrib><creatorcontrib>Takahashi, Hideyuki</creatorcontrib><creatorcontrib>Koumoto, Yasuko</creatorcontrib><creatorcontrib>Takagi, Junpei</creatorcontrib><creatorcontrib>Tamura, Kentaro</creatorcontrib><creatorcontrib>Sasaki, Ryosuke</creatorcontrib><creatorcontrib>Aoki, Koh</creatorcontrib><creatorcontrib>Shimada, Tomoo</creatorcontrib><creatorcontrib>Hara‐Nishimura, Ikuko</creatorcontrib><title>GFS9/TT9 contributes to intracellular membrane trafficking and flavonoid accumulation in Arabidopsis thaliana</title><title>The Plant journal : for cell and molecular biology</title><addtitle>Plant J</addtitle><description>Flavonoids are the most important pigments for the coloration of flowers and seeds. In plant cells, flavonoids are synthesized by a multi‐enzyme complex located on the cytosolic surface of the endoplasmic reticulum, and they accumulate in vacuoles. Two non‐exclusive pathways have been proposed to mediate flavonoid transport to vacuoles: the membrane transporter‐mediated pathway and the vesicle trafficking‐mediated pathway. No molecules involved in the vesicle trafficking‐mediated pathway have been identified, however. Here, we show that a membrane trafficking factor, GFS9, has a role in flavonoid accumulation in the vacuole. We screened a library of Arabidopsis thaliana mutants with defects in vesicle trafficking, and isolated the gfs9 mutant with abnormal pale tan‐colored seeds caused by low flavonoid accumulation levels. gfs9 is allelic to the unidentified transparent testa mutant tt9. The responsible gene for these phenotypes encodes a previously uncharacterized protein containing a region that is conserved among eukaryotes. GFS9 is a peripheral membrane protein localized at the Golgi apparatus. GFS9 deficiency causes several membrane trafficking defects, including the mis‐sorting of vacuolar proteins, vacuole fragmentation, the aggregation of enlarged vesicles, and the proliferation of autophagosome‐like structures. These results suggest that GFS9 is required for vacuolar development through membrane fusion at vacuoles. Our findings introduce a concept that plants use GFS9‐mediated membrane trafficking machinery for delivery of not only proteins but also phytochemicals, such as flavonoids, to vacuoles.</description><subject>Arabidopsis - genetics</subject><subject>Arabidopsis - physiology</subject><subject>Arabidopsis - ultrastructure</subject><subject>Arabidopsis Proteins - genetics</subject><subject>Arabidopsis Proteins - metabolism</subject><subject>Arabidopsis thaliana</subject><subject>Biological Transport</subject><subject>color</subject><subject>endoplasmic reticulum</subject><subject>Endoplasmic Reticulum - metabolism</subject><subject>Endoplasmic Reticulum - ultrastructure</subject><subject>eukaryotic cells</subject><subject>flavonoid</subject><subject>flavonoids</subject><subject>Flavonoids - metabolism</subject><subject>flowers</subject><subject>Flowers - genetics</subject><subject>Flowers - physiology</subject><subject>Flowers - ultrastructure</subject><subject>genes</subject><subject>Genotype & phenotype</subject><subject>GFS9</subject><subject>Golgi apparatus</subject><subject>Golgi Apparatus - metabolism</subject><subject>Golgi Apparatus - ultrastructure</subject><subject>Intracellular Membranes - metabolism</subject><subject>membrane fusion</subject><subject>membrane proteins</subject><subject>Membrane Proteins - genetics</subject><subject>Membrane Proteins - metabolism</subject><subject>Membranes</subject><subject>Metabolites</subject><subject>mutants</subject><subject>Phenotype</subject><subject>physiological transport</subject><subject>Phytochemicals</subject><subject>Pigments</subject><subject>Plant biology</subject><subject>Seeds</subject><subject>Seeds - genetics</subject><subject>Seeds - physiology</subject><subject>Seeds - ultrastructure</subject><subject>testa</subject><subject>transparent testa</subject><subject>vacuole</subject><subject>vacuoles</subject><subject>Vacuoles - metabolism</subject><subject>Vacuoles - ultrastructure</subject><subject>vesicle trafficking</subject><issn>0960-7412</issn><issn>1365-313X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkU1v1DAQhi0EokvhwB8AS1y4pOtx_LE5VhUtoEogdStxsyb-KF6SeLETUP897m7hgH3wePy8Y49fQl4DO4M61vN-dwZctfoJWUGrZNNC--0pWbFOsUYL4CfkRSk7xkC3SjwnJ1wCqE50KzJeXd506-22ozZNc479MvtC50Rj3aH1w7AMmOnoxz7j5GlNhhDtjzjdUZwcDQP-SlOKjqK1y1jhOaapqul5xj66tC-x1vuOQ8QJX5JnAYfiXz2up-T28sP24mNz_eXq08X5dROEFrrZ9EExsNL2XPqgndSauzZYK2RQUimNvROg3AZdnVwDOM82Ep3gvOZYe0reH-vuc_q5-DKbMZaHZmoLaSkGFPBuo2TXVfTdf-guLXmqrztQXHIteKXePFJLP3pn9jmOmO_N34-swPoI_I6Dv_93Dsw8OGSqQ-bgkNl-_XwIquLtUREwGbzLsZjbG85AMsY4U_XSP2wIjPk</recordid><startdate>201411</startdate><enddate>201411</enddate><creator>Ichino, Takuji</creator><creator>Fuji, Kentaro</creator><creator>Ueda, Haruko</creator><creator>Takahashi, Hideyuki</creator><creator>Koumoto, Yasuko</creator><creator>Takagi, Junpei</creator><creator>Tamura, Kentaro</creator><creator>Sasaki, Ryosuke</creator><creator>Aoki, Koh</creator><creator>Shimada, Tomoo</creator><creator>Hara‐Nishimura, Ikuko</creator><general>Blackwell Scientific Publishers and BIOS Scientific Publishers in association with the Society for Experimental Biology</general><general>Blackwell Publishing Ltd</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>201411</creationdate><title>GFS9/TT9 contributes to intracellular membrane trafficking and flavonoid accumulation in Arabidopsis thaliana</title><author>Ichino, Takuji ; Fuji, Kentaro ; Ueda, Haruko ; Takahashi, Hideyuki ; Koumoto, Yasuko ; Takagi, Junpei ; Tamura, Kentaro ; Sasaki, Ryosuke ; Aoki, Koh ; Shimada, Tomoo ; Hara‐Nishimura, Ikuko</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-f4747-8bf601c5cb25ef7d5772d3fcc45f65667abd416d8adada2711de085ad4228ad03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Arabidopsis - genetics</topic><topic>Arabidopsis - physiology</topic><topic>Arabidopsis - ultrastructure</topic><topic>Arabidopsis Proteins - genetics</topic><topic>Arabidopsis Proteins - metabolism</topic><topic>Arabidopsis thaliana</topic><topic>Biological Transport</topic><topic>color</topic><topic>endoplasmic reticulum</topic><topic>Endoplasmic Reticulum - metabolism</topic><topic>Endoplasmic Reticulum - ultrastructure</topic><topic>eukaryotic cells</topic><topic>flavonoid</topic><topic>flavonoids</topic><topic>Flavonoids - metabolism</topic><topic>flowers</topic><topic>Flowers - genetics</topic><topic>Flowers - physiology</topic><topic>Flowers - ultrastructure</topic><topic>genes</topic><topic>Genotype & phenotype</topic><topic>GFS9</topic><topic>Golgi apparatus</topic><topic>Golgi Apparatus - metabolism</topic><topic>Golgi Apparatus - ultrastructure</topic><topic>Intracellular Membranes - metabolism</topic><topic>membrane fusion</topic><topic>membrane proteins</topic><topic>Membrane Proteins - genetics</topic><topic>Membrane Proteins - metabolism</topic><topic>Membranes</topic><topic>Metabolites</topic><topic>mutants</topic><topic>Phenotype</topic><topic>physiological transport</topic><topic>Phytochemicals</topic><topic>Pigments</topic><topic>Plant biology</topic><topic>Seeds</topic><topic>Seeds - genetics</topic><topic>Seeds - physiology</topic><topic>Seeds - ultrastructure</topic><topic>testa</topic><topic>transparent testa</topic><topic>vacuole</topic><topic>vacuoles</topic><topic>Vacuoles - metabolism</topic><topic>Vacuoles - ultrastructure</topic><topic>vesicle trafficking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ichino, Takuji</creatorcontrib><creatorcontrib>Fuji, Kentaro</creatorcontrib><creatorcontrib>Ueda, Haruko</creatorcontrib><creatorcontrib>Takahashi, Hideyuki</creatorcontrib><creatorcontrib>Koumoto, Yasuko</creatorcontrib><creatorcontrib>Takagi, Junpei</creatorcontrib><creatorcontrib>Tamura, Kentaro</creatorcontrib><creatorcontrib>Sasaki, Ryosuke</creatorcontrib><creatorcontrib>Aoki, Koh</creatorcontrib><creatorcontrib>Shimada, Tomoo</creatorcontrib><creatorcontrib>Hara‐Nishimura, Ikuko</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The Plant journal : for cell and molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ichino, Takuji</au><au>Fuji, Kentaro</au><au>Ueda, Haruko</au><au>Takahashi, Hideyuki</au><au>Koumoto, Yasuko</au><au>Takagi, Junpei</au><au>Tamura, Kentaro</au><au>Sasaki, Ryosuke</au><au>Aoki, Koh</au><au>Shimada, Tomoo</au><au>Hara‐Nishimura, Ikuko</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>GFS9/TT9 contributes to intracellular membrane trafficking and flavonoid accumulation in Arabidopsis thaliana</atitle><jtitle>The Plant journal : for cell and molecular biology</jtitle><addtitle>Plant J</addtitle><date>2014-11</date><risdate>2014</risdate><volume>80</volume><issue>3</issue><spage>410</spage><epage>423</epage><pages>410-423</pages><issn>0960-7412</issn><eissn>1365-313X</eissn><abstract>Flavonoids are the most important pigments for the coloration of flowers and seeds. In plant cells, flavonoids are synthesized by a multi‐enzyme complex located on the cytosolic surface of the endoplasmic reticulum, and they accumulate in vacuoles. Two non‐exclusive pathways have been proposed to mediate flavonoid transport to vacuoles: the membrane transporter‐mediated pathway and the vesicle trafficking‐mediated pathway. No molecules involved in the vesicle trafficking‐mediated pathway have been identified, however. Here, we show that a membrane trafficking factor, GFS9, has a role in flavonoid accumulation in the vacuole. We screened a library of Arabidopsis thaliana mutants with defects in vesicle trafficking, and isolated the gfs9 mutant with abnormal pale tan‐colored seeds caused by low flavonoid accumulation levels. gfs9 is allelic to the unidentified transparent testa mutant tt9. The responsible gene for these phenotypes encodes a previously uncharacterized protein containing a region that is conserved among eukaryotes. GFS9 is a peripheral membrane protein localized at the Golgi apparatus. GFS9 deficiency causes several membrane trafficking defects, including the mis‐sorting of vacuolar proteins, vacuole fragmentation, the aggregation of enlarged vesicles, and the proliferation of autophagosome‐like structures. These results suggest that GFS9 is required for vacuolar development through membrane fusion at vacuoles. Our findings introduce a concept that plants use GFS9‐mediated membrane trafficking machinery for delivery of not only proteins but also phytochemicals, such as flavonoids, to vacuoles.</abstract><cop>England</cop><pub>Blackwell Scientific Publishers and BIOS Scientific Publishers in association with the Society for Experimental Biology</pub><pmid>25116949</pmid><doi>10.1111/tpj.12637</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0960-7412 |
ispartof | The Plant journal : for cell and molecular biology, 2014-11, Vol.80 (3), p.410-423 |
issn | 0960-7412 1365-313X |
language | eng |
recordid | cdi_proquest_miscellaneous_1612986599 |
source | Wiley Free Content; MEDLINE; IngentaConnect Free/Open Access Journals; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Arabidopsis - genetics Arabidopsis - physiology Arabidopsis - ultrastructure Arabidopsis Proteins - genetics Arabidopsis Proteins - metabolism Arabidopsis thaliana Biological Transport color endoplasmic reticulum Endoplasmic Reticulum - metabolism Endoplasmic Reticulum - ultrastructure eukaryotic cells flavonoid flavonoids Flavonoids - metabolism flowers Flowers - genetics Flowers - physiology Flowers - ultrastructure genes Genotype & phenotype GFS9 Golgi apparatus Golgi Apparatus - metabolism Golgi Apparatus - ultrastructure Intracellular Membranes - metabolism membrane fusion membrane proteins Membrane Proteins - genetics Membrane Proteins - metabolism Membranes Metabolites mutants Phenotype physiological transport Phytochemicals Pigments Plant biology Seeds Seeds - genetics Seeds - physiology Seeds - ultrastructure testa transparent testa vacuole vacuoles Vacuoles - metabolism Vacuoles - ultrastructure vesicle trafficking |
title | GFS9/TT9 contributes to intracellular membrane trafficking and flavonoid accumulation in Arabidopsis thaliana |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T04%3A32%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=GFS9/TT9%20contributes%20to%20intracellular%20membrane%20trafficking%20and%20flavonoid%20accumulation%20in%20Arabidopsis%20thaliana&rft.jtitle=The%20Plant%20journal%20:%20for%20cell%20and%20molecular%20biology&rft.au=Ichino,%20Takuji&rft.date=2014-11&rft.volume=80&rft.issue=3&rft.spage=410&rft.epage=423&rft.pages=410-423&rft.issn=0960-7412&rft.eissn=1365-313X&rft_id=info:doi/10.1111/tpj.12637&rft_dat=%3Cproquest_pubme%3E1612986599%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1612252742&rft_id=info:pmid/25116949&rfr_iscdi=true |