(15)N- and (2)H proteomic stable isotope probing links nitrogen flow to archaeal heterotrophic activity

Understanding how individual species contribute to nutrient transformations in a microbial community is critical to prediction of overall ecosystem function. We conducted microcosm experiments in which floating acid mine drainage (AMD) microbial biofilms were submerged - recapitulating the final sta...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental microbiology 2014-10, Vol.16 (10), p.3224-3237
Hauptverfasser: Justice, Nicholas B, Li, Zhou, Wang, Yingfeng, Spaudling, Susan E, Mosier, Annika C, Hettich, Robert L, Pan, Chongle, Banfield, Jillian F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3237
container_issue 10
container_start_page 3224
container_title Environmental microbiology
container_volume 16
creator Justice, Nicholas B
Li, Zhou
Wang, Yingfeng
Spaudling, Susan E
Mosier, Annika C
Hettich, Robert L
Pan, Chongle
Banfield, Jillian F
description Understanding how individual species contribute to nutrient transformations in a microbial community is critical to prediction of overall ecosystem function. We conducted microcosm experiments in which floating acid mine drainage (AMD) microbial biofilms were submerged - recapitulating the final stage in a natural biofilm life cycle. Biofilms were amended with either (15)NH4(+) or deuterium oxide ((2)H2O) and proteomic stable isotope probing (SIP) was used to track the extent to which different members of the community used these molecules in protein synthesis across anaerobic iron-reducing, aerobic iron-reducing and aerobic iron-oxidizing environments. Sulfobacillus spp. synthesized (15)N-enriched protein almost exclusively under iron-reducing conditions whereas the Leptospirillum spp. synthesized (15)N-enriched protein in all conditions. There were relatively few (15)N-enriched archaeal proteins, and all showed low atom% enrichment, consistent with Archaea synthesizing protein using the predominantly (14)N biomass derived from recycled biomolecules. In parallel experiments using (2)H2O, extensive archaeal protein synthesis was detected in all conditions. In contrast, the bacterial species showed little protein synthesis using (2)H2O. The nearly exclusive ability of Archaea to synthesize proteins using (2)H2O may be due to archaeal heterotrophy, whereby Archaea offset deleterious effects of (2)H by accessing (1)H generated by respiration of organic compounds.
doi_str_mv 10.1111/1462-2920.12488
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1612288104</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1612288104</sourcerecordid><originalsourceid>FETCH-LOGICAL-p196t-e1b7412c8d70a838c8bd9cb6aac13a059e17c0b7294b20f65287a6ffb84462233</originalsourceid><addsrcrecordid>eNo9kDFPwzAQhS0kREthZkMe2yFgO07sjKiiFKmCBebIdi6twYlD7IL67zGicMvT3T19encIXVFyQ1PdUl6yjFUstYxLeYKm_5MJOg_hjRAqckHO0IRxUZCKyynazmmxeMqw6hs8Z4s1HkYfwXfW4BCVdoBt8NEP8LPQtt9iZ_v3gHsbR7-FHrfOf-HosRrNToFyeAcREmP0wy5BlIn208bDBTptlQtwedQZel3dvyzX2eb54XF5t8kGWpUxA6oFp8zIRhAlc2mkbiqjS6UMzRUpKqDCEC1YxTUjbVkwKVTZtlrydCvL8xma_3JT3I89hFh3NhhwTvXg96GmJWVMSkp4sl4frXvdQVMPo-3UeKj_npN_A7N-Y7g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1612288104</pqid></control><display><type>article</type><title>(15)N- and (2)H proteomic stable isotope probing links nitrogen flow to archaeal heterotrophic activity</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Justice, Nicholas B ; Li, Zhou ; Wang, Yingfeng ; Spaudling, Susan E ; Mosier, Annika C ; Hettich, Robert L ; Pan, Chongle ; Banfield, Jillian F</creator><creatorcontrib>Justice, Nicholas B ; Li, Zhou ; Wang, Yingfeng ; Spaudling, Susan E ; Mosier, Annika C ; Hettich, Robert L ; Pan, Chongle ; Banfield, Jillian F</creatorcontrib><description>Understanding how individual species contribute to nutrient transformations in a microbial community is critical to prediction of overall ecosystem function. We conducted microcosm experiments in which floating acid mine drainage (AMD) microbial biofilms were submerged - recapitulating the final stage in a natural biofilm life cycle. Biofilms were amended with either (15)NH4(+) or deuterium oxide ((2)H2O) and proteomic stable isotope probing (SIP) was used to track the extent to which different members of the community used these molecules in protein synthesis across anaerobic iron-reducing, aerobic iron-reducing and aerobic iron-oxidizing environments. Sulfobacillus spp. synthesized (15)N-enriched protein almost exclusively under iron-reducing conditions whereas the Leptospirillum spp. synthesized (15)N-enriched protein in all conditions. There were relatively few (15)N-enriched archaeal proteins, and all showed low atom% enrichment, consistent with Archaea synthesizing protein using the predominantly (14)N biomass derived from recycled biomolecules. In parallel experiments using (2)H2O, extensive archaeal protein synthesis was detected in all conditions. In contrast, the bacterial species showed little protein synthesis using (2)H2O. The nearly exclusive ability of Archaea to synthesize proteins using (2)H2O may be due to archaeal heterotrophy, whereby Archaea offset deleterious effects of (2)H by accessing (1)H generated by respiration of organic compounds.</description><identifier>EISSN: 1462-2920</identifier><identifier>DOI: 10.1111/1462-2920.12488</identifier><identifier>PMID: 24750948</identifier><language>eng</language><publisher>England</publisher><subject>Archaea - metabolism ; Archaeal Proteins - biosynthesis ; Archaeal Proteins - metabolism ; Bacteria - metabolism ; Bacterial Proteins - biosynthesis ; Bacterial Proteins - metabolism ; Biofilms ; Deuterium Oxide ; Ecosystem ; Heterotrophic Processes ; Iron - metabolism ; Nitrogen - metabolism ; Nitrogen Isotopes ; Oxidation-Reduction ; Proteomics</subject><ispartof>Environmental microbiology, 2014-10, Vol.16 (10), p.3224-3237</ispartof><rights>2014 Society for Applied Microbiology and John Wiley &amp; Sons Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27928,27929</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24750948$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Justice, Nicholas B</creatorcontrib><creatorcontrib>Li, Zhou</creatorcontrib><creatorcontrib>Wang, Yingfeng</creatorcontrib><creatorcontrib>Spaudling, Susan E</creatorcontrib><creatorcontrib>Mosier, Annika C</creatorcontrib><creatorcontrib>Hettich, Robert L</creatorcontrib><creatorcontrib>Pan, Chongle</creatorcontrib><creatorcontrib>Banfield, Jillian F</creatorcontrib><title>(15)N- and (2)H proteomic stable isotope probing links nitrogen flow to archaeal heterotrophic activity</title><title>Environmental microbiology</title><addtitle>Environ Microbiol</addtitle><description>Understanding how individual species contribute to nutrient transformations in a microbial community is critical to prediction of overall ecosystem function. We conducted microcosm experiments in which floating acid mine drainage (AMD) microbial biofilms were submerged - recapitulating the final stage in a natural biofilm life cycle. Biofilms were amended with either (15)NH4(+) or deuterium oxide ((2)H2O) and proteomic stable isotope probing (SIP) was used to track the extent to which different members of the community used these molecules in protein synthesis across anaerobic iron-reducing, aerobic iron-reducing and aerobic iron-oxidizing environments. Sulfobacillus spp. synthesized (15)N-enriched protein almost exclusively under iron-reducing conditions whereas the Leptospirillum spp. synthesized (15)N-enriched protein in all conditions. There were relatively few (15)N-enriched archaeal proteins, and all showed low atom% enrichment, consistent with Archaea synthesizing protein using the predominantly (14)N biomass derived from recycled biomolecules. In parallel experiments using (2)H2O, extensive archaeal protein synthesis was detected in all conditions. In contrast, the bacterial species showed little protein synthesis using (2)H2O. The nearly exclusive ability of Archaea to synthesize proteins using (2)H2O may be due to archaeal heterotrophy, whereby Archaea offset deleterious effects of (2)H by accessing (1)H generated by respiration of organic compounds.</description><subject>Archaea - metabolism</subject><subject>Archaeal Proteins - biosynthesis</subject><subject>Archaeal Proteins - metabolism</subject><subject>Bacteria - metabolism</subject><subject>Bacterial Proteins - biosynthesis</subject><subject>Bacterial Proteins - metabolism</subject><subject>Biofilms</subject><subject>Deuterium Oxide</subject><subject>Ecosystem</subject><subject>Heterotrophic Processes</subject><subject>Iron - metabolism</subject><subject>Nitrogen - metabolism</subject><subject>Nitrogen Isotopes</subject><subject>Oxidation-Reduction</subject><subject>Proteomics</subject><issn>1462-2920</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo9kDFPwzAQhS0kREthZkMe2yFgO07sjKiiFKmCBebIdi6twYlD7IL67zGicMvT3T19encIXVFyQ1PdUl6yjFUstYxLeYKm_5MJOg_hjRAqckHO0IRxUZCKyynazmmxeMqw6hs8Z4s1HkYfwXfW4BCVdoBt8NEP8LPQtt9iZ_v3gHsbR7-FHrfOf-HosRrNToFyeAcREmP0wy5BlIn208bDBTptlQtwedQZel3dvyzX2eb54XF5t8kGWpUxA6oFp8zIRhAlc2mkbiqjS6UMzRUpKqDCEC1YxTUjbVkwKVTZtlrydCvL8xma_3JT3I89hFh3NhhwTvXg96GmJWVMSkp4sl4frXvdQVMPo-3UeKj_npN_A7N-Y7g</recordid><startdate>20141001</startdate><enddate>20141001</enddate><creator>Justice, Nicholas B</creator><creator>Li, Zhou</creator><creator>Wang, Yingfeng</creator><creator>Spaudling, Susan E</creator><creator>Mosier, Annika C</creator><creator>Hettich, Robert L</creator><creator>Pan, Chongle</creator><creator>Banfield, Jillian F</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>20141001</creationdate><title>(15)N- and (2)H proteomic stable isotope probing links nitrogen flow to archaeal heterotrophic activity</title><author>Justice, Nicholas B ; Li, Zhou ; Wang, Yingfeng ; Spaudling, Susan E ; Mosier, Annika C ; Hettich, Robert L ; Pan, Chongle ; Banfield, Jillian F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p196t-e1b7412c8d70a838c8bd9cb6aac13a059e17c0b7294b20f65287a6ffb84462233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Archaea - metabolism</topic><topic>Archaeal Proteins - biosynthesis</topic><topic>Archaeal Proteins - metabolism</topic><topic>Bacteria - metabolism</topic><topic>Bacterial Proteins - biosynthesis</topic><topic>Bacterial Proteins - metabolism</topic><topic>Biofilms</topic><topic>Deuterium Oxide</topic><topic>Ecosystem</topic><topic>Heterotrophic Processes</topic><topic>Iron - metabolism</topic><topic>Nitrogen - metabolism</topic><topic>Nitrogen Isotopes</topic><topic>Oxidation-Reduction</topic><topic>Proteomics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Justice, Nicholas B</creatorcontrib><creatorcontrib>Li, Zhou</creatorcontrib><creatorcontrib>Wang, Yingfeng</creatorcontrib><creatorcontrib>Spaudling, Susan E</creatorcontrib><creatorcontrib>Mosier, Annika C</creatorcontrib><creatorcontrib>Hettich, Robert L</creatorcontrib><creatorcontrib>Pan, Chongle</creatorcontrib><creatorcontrib>Banfield, Jillian F</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>Environmental microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Justice, Nicholas B</au><au>Li, Zhou</au><au>Wang, Yingfeng</au><au>Spaudling, Susan E</au><au>Mosier, Annika C</au><au>Hettich, Robert L</au><au>Pan, Chongle</au><au>Banfield, Jillian F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>(15)N- and (2)H proteomic stable isotope probing links nitrogen flow to archaeal heterotrophic activity</atitle><jtitle>Environmental microbiology</jtitle><addtitle>Environ Microbiol</addtitle><date>2014-10-01</date><risdate>2014</risdate><volume>16</volume><issue>10</issue><spage>3224</spage><epage>3237</epage><pages>3224-3237</pages><eissn>1462-2920</eissn><abstract>Understanding how individual species contribute to nutrient transformations in a microbial community is critical to prediction of overall ecosystem function. We conducted microcosm experiments in which floating acid mine drainage (AMD) microbial biofilms were submerged - recapitulating the final stage in a natural biofilm life cycle. Biofilms were amended with either (15)NH4(+) or deuterium oxide ((2)H2O) and proteomic stable isotope probing (SIP) was used to track the extent to which different members of the community used these molecules in protein synthesis across anaerobic iron-reducing, aerobic iron-reducing and aerobic iron-oxidizing environments. Sulfobacillus spp. synthesized (15)N-enriched protein almost exclusively under iron-reducing conditions whereas the Leptospirillum spp. synthesized (15)N-enriched protein in all conditions. There were relatively few (15)N-enriched archaeal proteins, and all showed low atom% enrichment, consistent with Archaea synthesizing protein using the predominantly (14)N biomass derived from recycled biomolecules. In parallel experiments using (2)H2O, extensive archaeal protein synthesis was detected in all conditions. In contrast, the bacterial species showed little protein synthesis using (2)H2O. The nearly exclusive ability of Archaea to synthesize proteins using (2)H2O may be due to archaeal heterotrophy, whereby Archaea offset deleterious effects of (2)H by accessing (1)H generated by respiration of organic compounds.</abstract><cop>England</cop><pmid>24750948</pmid><doi>10.1111/1462-2920.12488</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier EISSN: 1462-2920
ispartof Environmental microbiology, 2014-10, Vol.16 (10), p.3224-3237
issn 1462-2920
language eng
recordid cdi_proquest_miscellaneous_1612288104
source MEDLINE; Access via Wiley Online Library
subjects Archaea - metabolism
Archaeal Proteins - biosynthesis
Archaeal Proteins - metabolism
Bacteria - metabolism
Bacterial Proteins - biosynthesis
Bacterial Proteins - metabolism
Biofilms
Deuterium Oxide
Ecosystem
Heterotrophic Processes
Iron - metabolism
Nitrogen - metabolism
Nitrogen Isotopes
Oxidation-Reduction
Proteomics
title (15)N- and (2)H proteomic stable isotope probing links nitrogen flow to archaeal heterotrophic activity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T02%3A50%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=(15)N-%20and%20(2)H%20proteomic%20stable%20isotope%20probing%20links%20nitrogen%20flow%20to%20archaeal%20heterotrophic%20activity&rft.jtitle=Environmental%20microbiology&rft.au=Justice,%20Nicholas%20B&rft.date=2014-10-01&rft.volume=16&rft.issue=10&rft.spage=3224&rft.epage=3237&rft.pages=3224-3237&rft.eissn=1462-2920&rft_id=info:doi/10.1111/1462-2920.12488&rft_dat=%3Cproquest_pubme%3E1612288104%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1612288104&rft_id=info:pmid/24750948&rfr_iscdi=true