(15)N- and (2)H proteomic stable isotope probing links nitrogen flow to archaeal heterotrophic activity
Understanding how individual species contribute to nutrient transformations in a microbial community is critical to prediction of overall ecosystem function. We conducted microcosm experiments in which floating acid mine drainage (AMD) microbial biofilms were submerged - recapitulating the final sta...
Gespeichert in:
Veröffentlicht in: | Environmental microbiology 2014-10, Vol.16 (10), p.3224-3237 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3237 |
---|---|
container_issue | 10 |
container_start_page | 3224 |
container_title | Environmental microbiology |
container_volume | 16 |
creator | Justice, Nicholas B Li, Zhou Wang, Yingfeng Spaudling, Susan E Mosier, Annika C Hettich, Robert L Pan, Chongle Banfield, Jillian F |
description | Understanding how individual species contribute to nutrient transformations in a microbial community is critical to prediction of overall ecosystem function. We conducted microcosm experiments in which floating acid mine drainage (AMD) microbial biofilms were submerged - recapitulating the final stage in a natural biofilm life cycle. Biofilms were amended with either (15)NH4(+) or deuterium oxide ((2)H2O) and proteomic stable isotope probing (SIP) was used to track the extent to which different members of the community used these molecules in protein synthesis across anaerobic iron-reducing, aerobic iron-reducing and aerobic iron-oxidizing environments. Sulfobacillus spp. synthesized (15)N-enriched protein almost exclusively under iron-reducing conditions whereas the Leptospirillum spp. synthesized (15)N-enriched protein in all conditions. There were relatively few (15)N-enriched archaeal proteins, and all showed low atom% enrichment, consistent with Archaea synthesizing protein using the predominantly (14)N biomass derived from recycled biomolecules. In parallel experiments using (2)H2O, extensive archaeal protein synthesis was detected in all conditions. In contrast, the bacterial species showed little protein synthesis using (2)H2O. The nearly exclusive ability of Archaea to synthesize proteins using (2)H2O may be due to archaeal heterotrophy, whereby Archaea offset deleterious effects of (2)H by accessing (1)H generated by respiration of organic compounds. |
doi_str_mv | 10.1111/1462-2920.12488 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1612288104</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1612288104</sourcerecordid><originalsourceid>FETCH-LOGICAL-p196t-e1b7412c8d70a838c8bd9cb6aac13a059e17c0b7294b20f65287a6ffb84462233</originalsourceid><addsrcrecordid>eNo9kDFPwzAQhS0kREthZkMe2yFgO07sjKiiFKmCBebIdi6twYlD7IL67zGicMvT3T19encIXVFyQ1PdUl6yjFUstYxLeYKm_5MJOg_hjRAqckHO0IRxUZCKyynazmmxeMqw6hs8Z4s1HkYfwXfW4BCVdoBt8NEP8LPQtt9iZ_v3gHsbR7-FHrfOf-HosRrNToFyeAcREmP0wy5BlIn208bDBTptlQtwedQZel3dvyzX2eb54XF5t8kGWpUxA6oFp8zIRhAlc2mkbiqjS6UMzRUpKqDCEC1YxTUjbVkwKVTZtlrydCvL8xma_3JT3I89hFh3NhhwTvXg96GmJWVMSkp4sl4frXvdQVMPo-3UeKj_npN_A7N-Y7g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1612288104</pqid></control><display><type>article</type><title>(15)N- and (2)H proteomic stable isotope probing links nitrogen flow to archaeal heterotrophic activity</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Justice, Nicholas B ; Li, Zhou ; Wang, Yingfeng ; Spaudling, Susan E ; Mosier, Annika C ; Hettich, Robert L ; Pan, Chongle ; Banfield, Jillian F</creator><creatorcontrib>Justice, Nicholas B ; Li, Zhou ; Wang, Yingfeng ; Spaudling, Susan E ; Mosier, Annika C ; Hettich, Robert L ; Pan, Chongle ; Banfield, Jillian F</creatorcontrib><description>Understanding how individual species contribute to nutrient transformations in a microbial community is critical to prediction of overall ecosystem function. We conducted microcosm experiments in which floating acid mine drainage (AMD) microbial biofilms were submerged - recapitulating the final stage in a natural biofilm life cycle. Biofilms were amended with either (15)NH4(+) or deuterium oxide ((2)H2O) and proteomic stable isotope probing (SIP) was used to track the extent to which different members of the community used these molecules in protein synthesis across anaerobic iron-reducing, aerobic iron-reducing and aerobic iron-oxidizing environments. Sulfobacillus spp. synthesized (15)N-enriched protein almost exclusively under iron-reducing conditions whereas the Leptospirillum spp. synthesized (15)N-enriched protein in all conditions. There were relatively few (15)N-enriched archaeal proteins, and all showed low atom% enrichment, consistent with Archaea synthesizing protein using the predominantly (14)N biomass derived from recycled biomolecules. In parallel experiments using (2)H2O, extensive archaeal protein synthesis was detected in all conditions. In contrast, the bacterial species showed little protein synthesis using (2)H2O. The nearly exclusive ability of Archaea to synthesize proteins using (2)H2O may be due to archaeal heterotrophy, whereby Archaea offset deleterious effects of (2)H by accessing (1)H generated by respiration of organic compounds.</description><identifier>EISSN: 1462-2920</identifier><identifier>DOI: 10.1111/1462-2920.12488</identifier><identifier>PMID: 24750948</identifier><language>eng</language><publisher>England</publisher><subject>Archaea - metabolism ; Archaeal Proteins - biosynthesis ; Archaeal Proteins - metabolism ; Bacteria - metabolism ; Bacterial Proteins - biosynthesis ; Bacterial Proteins - metabolism ; Biofilms ; Deuterium Oxide ; Ecosystem ; Heterotrophic Processes ; Iron - metabolism ; Nitrogen - metabolism ; Nitrogen Isotopes ; Oxidation-Reduction ; Proteomics</subject><ispartof>Environmental microbiology, 2014-10, Vol.16 (10), p.3224-3237</ispartof><rights>2014 Society for Applied Microbiology and John Wiley & Sons Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27928,27929</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24750948$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Justice, Nicholas B</creatorcontrib><creatorcontrib>Li, Zhou</creatorcontrib><creatorcontrib>Wang, Yingfeng</creatorcontrib><creatorcontrib>Spaudling, Susan E</creatorcontrib><creatorcontrib>Mosier, Annika C</creatorcontrib><creatorcontrib>Hettich, Robert L</creatorcontrib><creatorcontrib>Pan, Chongle</creatorcontrib><creatorcontrib>Banfield, Jillian F</creatorcontrib><title>(15)N- and (2)H proteomic stable isotope probing links nitrogen flow to archaeal heterotrophic activity</title><title>Environmental microbiology</title><addtitle>Environ Microbiol</addtitle><description>Understanding how individual species contribute to nutrient transformations in a microbial community is critical to prediction of overall ecosystem function. We conducted microcosm experiments in which floating acid mine drainage (AMD) microbial biofilms were submerged - recapitulating the final stage in a natural biofilm life cycle. Biofilms were amended with either (15)NH4(+) or deuterium oxide ((2)H2O) and proteomic stable isotope probing (SIP) was used to track the extent to which different members of the community used these molecules in protein synthesis across anaerobic iron-reducing, aerobic iron-reducing and aerobic iron-oxidizing environments. Sulfobacillus spp. synthesized (15)N-enriched protein almost exclusively under iron-reducing conditions whereas the Leptospirillum spp. synthesized (15)N-enriched protein in all conditions. There were relatively few (15)N-enriched archaeal proteins, and all showed low atom% enrichment, consistent with Archaea synthesizing protein using the predominantly (14)N biomass derived from recycled biomolecules. In parallel experiments using (2)H2O, extensive archaeal protein synthesis was detected in all conditions. In contrast, the bacterial species showed little protein synthesis using (2)H2O. The nearly exclusive ability of Archaea to synthesize proteins using (2)H2O may be due to archaeal heterotrophy, whereby Archaea offset deleterious effects of (2)H by accessing (1)H generated by respiration of organic compounds.</description><subject>Archaea - metabolism</subject><subject>Archaeal Proteins - biosynthesis</subject><subject>Archaeal Proteins - metabolism</subject><subject>Bacteria - metabolism</subject><subject>Bacterial Proteins - biosynthesis</subject><subject>Bacterial Proteins - metabolism</subject><subject>Biofilms</subject><subject>Deuterium Oxide</subject><subject>Ecosystem</subject><subject>Heterotrophic Processes</subject><subject>Iron - metabolism</subject><subject>Nitrogen - metabolism</subject><subject>Nitrogen Isotopes</subject><subject>Oxidation-Reduction</subject><subject>Proteomics</subject><issn>1462-2920</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo9kDFPwzAQhS0kREthZkMe2yFgO07sjKiiFKmCBebIdi6twYlD7IL67zGicMvT3T19encIXVFyQ1PdUl6yjFUstYxLeYKm_5MJOg_hjRAqckHO0IRxUZCKyynazmmxeMqw6hs8Z4s1HkYfwXfW4BCVdoBt8NEP8LPQtt9iZ_v3gHsbR7-FHrfOf-HosRrNToFyeAcREmP0wy5BlIn208bDBTptlQtwedQZel3dvyzX2eb54XF5t8kGWpUxA6oFp8zIRhAlc2mkbiqjS6UMzRUpKqDCEC1YxTUjbVkwKVTZtlrydCvL8xma_3JT3I89hFh3NhhwTvXg96GmJWVMSkp4sl4frXvdQVMPo-3UeKj_npN_A7N-Y7g</recordid><startdate>20141001</startdate><enddate>20141001</enddate><creator>Justice, Nicholas B</creator><creator>Li, Zhou</creator><creator>Wang, Yingfeng</creator><creator>Spaudling, Susan E</creator><creator>Mosier, Annika C</creator><creator>Hettich, Robert L</creator><creator>Pan, Chongle</creator><creator>Banfield, Jillian F</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>20141001</creationdate><title>(15)N- and (2)H proteomic stable isotope probing links nitrogen flow to archaeal heterotrophic activity</title><author>Justice, Nicholas B ; Li, Zhou ; Wang, Yingfeng ; Spaudling, Susan E ; Mosier, Annika C ; Hettich, Robert L ; Pan, Chongle ; Banfield, Jillian F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p196t-e1b7412c8d70a838c8bd9cb6aac13a059e17c0b7294b20f65287a6ffb84462233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Archaea - metabolism</topic><topic>Archaeal Proteins - biosynthesis</topic><topic>Archaeal Proteins - metabolism</topic><topic>Bacteria - metabolism</topic><topic>Bacterial Proteins - biosynthesis</topic><topic>Bacterial Proteins - metabolism</topic><topic>Biofilms</topic><topic>Deuterium Oxide</topic><topic>Ecosystem</topic><topic>Heterotrophic Processes</topic><topic>Iron - metabolism</topic><topic>Nitrogen - metabolism</topic><topic>Nitrogen Isotopes</topic><topic>Oxidation-Reduction</topic><topic>Proteomics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Justice, Nicholas B</creatorcontrib><creatorcontrib>Li, Zhou</creatorcontrib><creatorcontrib>Wang, Yingfeng</creatorcontrib><creatorcontrib>Spaudling, Susan E</creatorcontrib><creatorcontrib>Mosier, Annika C</creatorcontrib><creatorcontrib>Hettich, Robert L</creatorcontrib><creatorcontrib>Pan, Chongle</creatorcontrib><creatorcontrib>Banfield, Jillian F</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>Environmental microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Justice, Nicholas B</au><au>Li, Zhou</au><au>Wang, Yingfeng</au><au>Spaudling, Susan E</au><au>Mosier, Annika C</au><au>Hettich, Robert L</au><au>Pan, Chongle</au><au>Banfield, Jillian F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>(15)N- and (2)H proteomic stable isotope probing links nitrogen flow to archaeal heterotrophic activity</atitle><jtitle>Environmental microbiology</jtitle><addtitle>Environ Microbiol</addtitle><date>2014-10-01</date><risdate>2014</risdate><volume>16</volume><issue>10</issue><spage>3224</spage><epage>3237</epage><pages>3224-3237</pages><eissn>1462-2920</eissn><abstract>Understanding how individual species contribute to nutrient transformations in a microbial community is critical to prediction of overall ecosystem function. We conducted microcosm experiments in which floating acid mine drainage (AMD) microbial biofilms were submerged - recapitulating the final stage in a natural biofilm life cycle. Biofilms were amended with either (15)NH4(+) or deuterium oxide ((2)H2O) and proteomic stable isotope probing (SIP) was used to track the extent to which different members of the community used these molecules in protein synthesis across anaerobic iron-reducing, aerobic iron-reducing and aerobic iron-oxidizing environments. Sulfobacillus spp. synthesized (15)N-enriched protein almost exclusively under iron-reducing conditions whereas the Leptospirillum spp. synthesized (15)N-enriched protein in all conditions. There were relatively few (15)N-enriched archaeal proteins, and all showed low atom% enrichment, consistent with Archaea synthesizing protein using the predominantly (14)N biomass derived from recycled biomolecules. In parallel experiments using (2)H2O, extensive archaeal protein synthesis was detected in all conditions. In contrast, the bacterial species showed little protein synthesis using (2)H2O. The nearly exclusive ability of Archaea to synthesize proteins using (2)H2O may be due to archaeal heterotrophy, whereby Archaea offset deleterious effects of (2)H by accessing (1)H generated by respiration of organic compounds.</abstract><cop>England</cop><pmid>24750948</pmid><doi>10.1111/1462-2920.12488</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | EISSN: 1462-2920 |
ispartof | Environmental microbiology, 2014-10, Vol.16 (10), p.3224-3237 |
issn | 1462-2920 |
language | eng |
recordid | cdi_proquest_miscellaneous_1612288104 |
source | MEDLINE; Access via Wiley Online Library |
subjects | Archaea - metabolism Archaeal Proteins - biosynthesis Archaeal Proteins - metabolism Bacteria - metabolism Bacterial Proteins - biosynthesis Bacterial Proteins - metabolism Biofilms Deuterium Oxide Ecosystem Heterotrophic Processes Iron - metabolism Nitrogen - metabolism Nitrogen Isotopes Oxidation-Reduction Proteomics |
title | (15)N- and (2)H proteomic stable isotope probing links nitrogen flow to archaeal heterotrophic activity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T02%3A50%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=(15)N-%20and%20(2)H%20proteomic%20stable%20isotope%20probing%20links%20nitrogen%20flow%20to%20archaeal%20heterotrophic%20activity&rft.jtitle=Environmental%20microbiology&rft.au=Justice,%20Nicholas%20B&rft.date=2014-10-01&rft.volume=16&rft.issue=10&rft.spage=3224&rft.epage=3237&rft.pages=3224-3237&rft.eissn=1462-2920&rft_id=info:doi/10.1111/1462-2920.12488&rft_dat=%3Cproquest_pubme%3E1612288104%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1612288104&rft_id=info:pmid/24750948&rfr_iscdi=true |