Whistler turbulence at variable electron beta: Three-dimensional particle-in-cell simulations
Three‐dimensional particle‐in‐cell (PIC) simulations of whistler turbulence at three different initial values of βe are carried out on a collisionless, homogeneous, magnetized plasma model. The simulations begin with an initial ensemble of relatively long‐wavelength whistler modes and follow the tem...
Gespeichert in:
Veröffentlicht in: | Journal of geophysical research. Space physics 2013-06, Vol.118 (6), p.2824-2833 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2833 |
---|---|
container_issue | 6 |
container_start_page | 2824 |
container_title | Journal of geophysical research. Space physics |
container_volume | 118 |
creator | Chang, Ouliang Gary, S. Peter Wang, Joseph |
description | Three‐dimensional particle‐in‐cell (PIC) simulations of whistler turbulence at three different initial values of βe are carried out on a collisionless, homogeneous, magnetized plasma model. The simulations begin with an initial ensemble of relatively long‐wavelength whistler modes and follow the temporal evolution of the fluctuations as wave‐wave interactions lead to a forward cascade into a broadband, turbulent spectrum at shorter wavelengths with a wave vector anisotropy in the sense of k⟂>k∥. Here ⟂ and ∥ denote directions perpendicular and parallel to the background magnetic field, respectively. In addition, wave‐particle interactions lead to fluctuating field dissipation and electron heating with a temperature anisotropy in the sense of T∥>T⟂. At early times, the wave‐wave cascade dominates energy transport, whereas wave‐particle Landau damping dominates at late simulation times. Larger values of βe correspond to a faster forward cascade in wave number and to a faster rate of electron heating, as well as to a less anisotropic wave vector distribution and to a less anisotropic electron velocity distribution.
Key Points
Whistler turbulence cascade rate increases with increasing beta_e.
Whistler turbulence wavevector anisotropy decreases with increasing beta_e.
The electron kinetic energy anisotropy decreases with increasing beta_e. |
doi_str_mv | 10.1002/jgra.50365 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1611643462</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1611643462</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4385-e31997a584eaf2f3846fa0a5fb2a74b0e6051dc48e2e47f636bfb9f3adc7c4223</originalsourceid><addsrcrecordid>eNp9kEtLxEAMx4soKOrFT1DwIkLXeXXaehMfq7L4FkGQIZ3N6Kyz7TrT-vj2tq568GAuCcnvH5J_FG1QMqCEsJ3Jo4dBSrhMF6IVRmWRFIKwxZ-a52Q5Wg9hQrrIuxZNV6KHuycbGoc-blpftg4rjTE08St4C6XDGB3qxtdVXGIDu_HNk0dMxnaKVbB1BS6egW-sdpjYKtHoXBzstHXQdNOwFi0ZcAHXv_NqdHt0eLN_nIzOhyf7e6NEC56nCXJaFBmkuUAwzPBcSAMEUlMyyERJUJKUjrXIkaHIjOSyNGVhOIx1pgVjfDXamu-d-fqlxdCoqQ39MVBh3QZFJaVScCF7dPMPOqlb3z3SUzxnBRGcdNT2nNK-DsGjUTNvp-A_FCWqN1v1ZqsvszuYzuE36_DjH1KdDq_2fjTJXNO5j--_GvDPSmY8S9Xd2VCNzvj1wT2_UJf8E-W8kWM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1638290430</pqid></control><display><type>article</type><title>Whistler turbulence at variable electron beta: Three-dimensional particle-in-cell simulations</title><source>Wiley Free Content</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Chang, Ouliang ; Gary, S. Peter ; Wang, Joseph</creator><creatorcontrib>Chang, Ouliang ; Gary, S. Peter ; Wang, Joseph</creatorcontrib><description>Three‐dimensional particle‐in‐cell (PIC) simulations of whistler turbulence at three different initial values of βe are carried out on a collisionless, homogeneous, magnetized plasma model. The simulations begin with an initial ensemble of relatively long‐wavelength whistler modes and follow the temporal evolution of the fluctuations as wave‐wave interactions lead to a forward cascade into a broadband, turbulent spectrum at shorter wavelengths with a wave vector anisotropy in the sense of k⟂>k∥. Here ⟂ and ∥ denote directions perpendicular and parallel to the background magnetic field, respectively. In addition, wave‐particle interactions lead to fluctuating field dissipation and electron heating with a temperature anisotropy in the sense of T∥>T⟂. At early times, the wave‐wave cascade dominates energy transport, whereas wave‐particle Landau damping dominates at late simulation times. Larger values of βe correspond to a faster forward cascade in wave number and to a faster rate of electron heating, as well as to a less anisotropic wave vector distribution and to a less anisotropic electron velocity distribution.
Key Points
Whistler turbulence cascade rate increases with increasing beta_e.
Whistler turbulence wavevector anisotropy decreases with increasing beta_e.
The electron kinetic energy anisotropy decreases with increasing beta_e.</description><identifier>ISSN: 2169-9380</identifier><identifier>EISSN: 2169-9402</identifier><identifier>DOI: 10.1002/jgra.50365</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Anisotropy ; Geophysics ; Heating ; Kinetic energy ; Magnetic fields ; particle-in-cell simulations ; plasma turbulence ; Turbulence ; Velocity distribution ; Wavelengths ; whistler fluctuations</subject><ispartof>Journal of geophysical research. Space physics, 2013-06, Vol.118 (6), p.2824-2833</ispartof><rights>2013. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4385-e31997a584eaf2f3846fa0a5fb2a74b0e6051dc48e2e47f636bfb9f3adc7c4223</citedby><cites>FETCH-LOGICAL-c4385-e31997a584eaf2f3846fa0a5fb2a74b0e6051dc48e2e47f636bfb9f3adc7c4223</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjgra.50365$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjgra.50365$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids></links><search><creatorcontrib>Chang, Ouliang</creatorcontrib><creatorcontrib>Gary, S. Peter</creatorcontrib><creatorcontrib>Wang, Joseph</creatorcontrib><title>Whistler turbulence at variable electron beta: Three-dimensional particle-in-cell simulations</title><title>Journal of geophysical research. Space physics</title><addtitle>J. Geophys. Res. Space Physics</addtitle><description>Three‐dimensional particle‐in‐cell (PIC) simulations of whistler turbulence at three different initial values of βe are carried out on a collisionless, homogeneous, magnetized plasma model. The simulations begin with an initial ensemble of relatively long‐wavelength whistler modes and follow the temporal evolution of the fluctuations as wave‐wave interactions lead to a forward cascade into a broadband, turbulent spectrum at shorter wavelengths with a wave vector anisotropy in the sense of k⟂>k∥. Here ⟂ and ∥ denote directions perpendicular and parallel to the background magnetic field, respectively. In addition, wave‐particle interactions lead to fluctuating field dissipation and electron heating with a temperature anisotropy in the sense of T∥>T⟂. At early times, the wave‐wave cascade dominates energy transport, whereas wave‐particle Landau damping dominates at late simulation times. Larger values of βe correspond to a faster forward cascade in wave number and to a faster rate of electron heating, as well as to a less anisotropic wave vector distribution and to a less anisotropic electron velocity distribution.
Key Points
Whistler turbulence cascade rate increases with increasing beta_e.
Whistler turbulence wavevector anisotropy decreases with increasing beta_e.
The electron kinetic energy anisotropy decreases with increasing beta_e.</description><subject>Anisotropy</subject><subject>Geophysics</subject><subject>Heating</subject><subject>Kinetic energy</subject><subject>Magnetic fields</subject><subject>particle-in-cell simulations</subject><subject>plasma turbulence</subject><subject>Turbulence</subject><subject>Velocity distribution</subject><subject>Wavelengths</subject><subject>whistler fluctuations</subject><issn>2169-9380</issn><issn>2169-9402</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp9kEtLxEAMx4soKOrFT1DwIkLXeXXaehMfq7L4FkGQIZ3N6Kyz7TrT-vj2tq568GAuCcnvH5J_FG1QMqCEsJ3Jo4dBSrhMF6IVRmWRFIKwxZ-a52Q5Wg9hQrrIuxZNV6KHuycbGoc-blpftg4rjTE08St4C6XDGB3qxtdVXGIDu_HNk0dMxnaKVbB1BS6egW-sdpjYKtHoXBzstHXQdNOwFi0ZcAHXv_NqdHt0eLN_nIzOhyf7e6NEC56nCXJaFBmkuUAwzPBcSAMEUlMyyERJUJKUjrXIkaHIjOSyNGVhOIx1pgVjfDXamu-d-fqlxdCoqQ39MVBh3QZFJaVScCF7dPMPOqlb3z3SUzxnBRGcdNT2nNK-DsGjUTNvp-A_FCWqN1v1ZqsvszuYzuE36_DjH1KdDq_2fjTJXNO5j--_GvDPSmY8S9Xd2VCNzvj1wT2_UJf8E-W8kWM</recordid><startdate>201306</startdate><enddate>201306</enddate><creator>Chang, Ouliang</creator><creator>Gary, S. Peter</creator><creator>Wang, Joseph</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope></search><sort><creationdate>201306</creationdate><title>Whistler turbulence at variable electron beta: Three-dimensional particle-in-cell simulations</title><author>Chang, Ouliang ; Gary, S. Peter ; Wang, Joseph</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4385-e31997a584eaf2f3846fa0a5fb2a74b0e6051dc48e2e47f636bfb9f3adc7c4223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Anisotropy</topic><topic>Geophysics</topic><topic>Heating</topic><topic>Kinetic energy</topic><topic>Magnetic fields</topic><topic>particle-in-cell simulations</topic><topic>plasma turbulence</topic><topic>Turbulence</topic><topic>Velocity distribution</topic><topic>Wavelengths</topic><topic>whistler fluctuations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chang, Ouliang</creatorcontrib><creatorcontrib>Gary, S. Peter</creatorcontrib><creatorcontrib>Wang, Joseph</creatorcontrib><collection>Istex</collection><collection>Wiley Online Library Open Access</collection><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of geophysical research. Space physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chang, Ouliang</au><au>Gary, S. Peter</au><au>Wang, Joseph</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Whistler turbulence at variable electron beta: Three-dimensional particle-in-cell simulations</atitle><jtitle>Journal of geophysical research. Space physics</jtitle><addtitle>J. Geophys. Res. Space Physics</addtitle><date>2013-06</date><risdate>2013</risdate><volume>118</volume><issue>6</issue><spage>2824</spage><epage>2833</epage><pages>2824-2833</pages><issn>2169-9380</issn><eissn>2169-9402</eissn><abstract>Three‐dimensional particle‐in‐cell (PIC) simulations of whistler turbulence at three different initial values of βe are carried out on a collisionless, homogeneous, magnetized plasma model. The simulations begin with an initial ensemble of relatively long‐wavelength whistler modes and follow the temporal evolution of the fluctuations as wave‐wave interactions lead to a forward cascade into a broadband, turbulent spectrum at shorter wavelengths with a wave vector anisotropy in the sense of k⟂>k∥. Here ⟂ and ∥ denote directions perpendicular and parallel to the background magnetic field, respectively. In addition, wave‐particle interactions lead to fluctuating field dissipation and electron heating with a temperature anisotropy in the sense of T∥>T⟂. At early times, the wave‐wave cascade dominates energy transport, whereas wave‐particle Landau damping dominates at late simulation times. Larger values of βe correspond to a faster forward cascade in wave number and to a faster rate of electron heating, as well as to a less anisotropic wave vector distribution and to a less anisotropic electron velocity distribution.
Key Points
Whistler turbulence cascade rate increases with increasing beta_e.
Whistler turbulence wavevector anisotropy decreases with increasing beta_e.
The electron kinetic energy anisotropy decreases with increasing beta_e.</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/jgra.50365</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-9380 |
ispartof | Journal of geophysical research. Space physics, 2013-06, Vol.118 (6), p.2824-2833 |
issn | 2169-9380 2169-9402 |
language | eng |
recordid | cdi_proquest_miscellaneous_1611643462 |
source | Wiley Free Content; Wiley Online Library Journals Frontfile Complete |
subjects | Anisotropy Geophysics Heating Kinetic energy Magnetic fields particle-in-cell simulations plasma turbulence Turbulence Velocity distribution Wavelengths whistler fluctuations |
title | Whistler turbulence at variable electron beta: Three-dimensional particle-in-cell simulations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T19%3A05%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Whistler%20turbulence%20at%20variable%20electron%20beta:%20Three-dimensional%20particle-in-cell%20simulations&rft.jtitle=Journal%20of%20geophysical%20research.%20Space%20physics&rft.au=Chang,%20Ouliang&rft.date=2013-06&rft.volume=118&rft.issue=6&rft.spage=2824&rft.epage=2833&rft.pages=2824-2833&rft.issn=2169-9380&rft.eissn=2169-9402&rft_id=info:doi/10.1002/jgra.50365&rft_dat=%3Cproquest_cross%3E1611643462%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1638290430&rft_id=info:pmid/&rfr_iscdi=true |