The Response of the Sea Ice Edge to Atmospheric and Oceanic Jet Formation

The sea ice edge presents a region of many feedback processes between the atmosphere, ocean, and sea ice (Maslowski et al.). Here the authors focus on the impact of on-ice atmospheric and oceanic flows at the sea ice edge. Mesoscale jet formation due to the Coriolis effect is well understood over sh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physical oceanography 2014-09, Vol.44 (9), p.2292-2316
Hauptverfasser: Heorton, Harold D. B. S., Feltham, Daniel L., Hunt, Julian C. R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2316
container_issue 9
container_start_page 2292
container_title Journal of physical oceanography
container_volume 44
creator Heorton, Harold D. B. S.
Feltham, Daniel L.
Hunt, Julian C. R.
description The sea ice edge presents a region of many feedback processes between the atmosphere, ocean, and sea ice (Maslowski et al.). Here the authors focus on the impact of on-ice atmospheric and oceanic flows at the sea ice edge. Mesoscale jet formation due to the Coriolis effect is well understood over sharp changes in surface roughness such as coastlines (Hunt et al.). This sharp change in surface roughness is experienced by the atmosphere and ocean encountering a compacted sea ice edge. This paper presents a study of a dynamic sea ice edge responding to prescribed atmospheric and oceanic jet formation. An idealized analytical model of sea ice drift is developed and compared to a sea ice climate model [the Los Alamos Sea Ice Model (CICE)] run on an idealized domain. The response of the CICE model to jet formation is tested at various resolutions. It is found that the formation of atmospheric jets at the sea ice edge increases the wind speed parallel to the sea ice edge and results in the formation of a sea ice drift jet in agreement with an observed sea ice drift jet (Johannessen et al.). The increase in ice drift speed is dependent upon the angle between the ice edge and wind and results in up to a 40% increase in ice transport along the sea ice edge. The possibility of oceanic jet formation and the resultant effect upon the sea ice edge is less conclusive. Observations and climate model data of the polar oceans have been analyzed to show areas of likely atmospheric jet formation, with the Fram Strait being of particular interest.
doi_str_mv 10.1175/JPO-D-13-0184.1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1611633960</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1611633960</sourcerecordid><originalsourceid>FETCH-LOGICAL-c417t-acf8740a41dd4155e652b7fad3850c79f396003a559f8bb9dfff33f902e188063</originalsourceid><addsrcrecordid>eNp9kT1PwzAURS0EEqUws1piYUl5L7ZjZ6z6Aa0qFUGZLdexaaomDnE68O9JVSYGpnufdHT1pEPIPcIIUYqn5es6mSbIEkDFR3hBBihSSIArcUkGAGmasEzCNbmJcQ8AGab5gCw2O0ffXGxCHR0Nnnb9_e4MXVhHZ8Wno12g464Ksdm5trTU1AVdW2fqvi9dR-ehrUxXhvqWXHlziO7uN4fkYz7bTF6S1fp5MRmvEstRdomxXkkOhmNRcBTCZSLdSm8KpgRYmXuWZwDMCJF7td3mhfeeMZ9D6lApyNiQPJ53mzZ8HV3sdFVG6w4HU7twjBozxIydVnr04Q-6D8e27r_TqcxzhVxy_I9CkaXAOUjZU09nyrYhxtZ53bRlZdpvjaBPAnQvQE81Mn0S0OcPs-91LQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1562044077</pqid></control><display><type>article</type><title>The Response of the Sea Ice Edge to Atmospheric and Oceanic Jet Formation</title><source>American Meteorological Society</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Heorton, Harold D. B. S. ; Feltham, Daniel L. ; Hunt, Julian C. R.</creator><creatorcontrib>Heorton, Harold D. B. S. ; Feltham, Daniel L. ; Hunt, Julian C. R.</creatorcontrib><description>The sea ice edge presents a region of many feedback processes between the atmosphere, ocean, and sea ice (Maslowski et al.). Here the authors focus on the impact of on-ice atmospheric and oceanic flows at the sea ice edge. Mesoscale jet formation due to the Coriolis effect is well understood over sharp changes in surface roughness such as coastlines (Hunt et al.). This sharp change in surface roughness is experienced by the atmosphere and ocean encountering a compacted sea ice edge. This paper presents a study of a dynamic sea ice edge responding to prescribed atmospheric and oceanic jet formation. An idealized analytical model of sea ice drift is developed and compared to a sea ice climate model [the Los Alamos Sea Ice Model (CICE)] run on an idealized domain. The response of the CICE model to jet formation is tested at various resolutions. It is found that the formation of atmospheric jets at the sea ice edge increases the wind speed parallel to the sea ice edge and results in the formation of a sea ice drift jet in agreement with an observed sea ice drift jet (Johannessen et al.). The increase in ice drift speed is dependent upon the angle between the ice edge and wind and results in up to a 40% increase in ice transport along the sea ice edge. The possibility of oceanic jet formation and the resultant effect upon the sea ice edge is less conclusive. Observations and climate model data of the polar oceans have been analyzed to show areas of likely atmospheric jet formation, with the Fram Strait being of particular interest.</description><identifier>ISSN: 0022-3670</identifier><identifier>EISSN: 1520-0485</identifier><identifier>DOI: 10.1175/JPO-D-13-0184.1</identifier><language>eng</language><publisher>Boston: American Meteorological Society</publisher><subject>Atmosphere ; Atmospheric boundary layer ; Climate ; Climate models ; Coriolis effect ; Drift ; Food chains ; Ice ; Ice drift ; Ice edge ; Ice formation ; Investigations ; Marine mammals ; Meteorology ; Modelling ; Ocean currents ; Oceans ; Sea ice ; Sea ice models ; Surface roughness ; Water flow ; Wind ; Wind speed</subject><ispartof>Journal of physical oceanography, 2014-09, Vol.44 (9), p.2292-2316</ispartof><rights>Copyright American Meteorological Society Sep 2014</rights><rights>Copyright American Meteorological Society 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c417t-acf8740a41dd4155e652b7fad3850c79f396003a559f8bb9dfff33f902e188063</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,3668,27905,27906</link.rule.ids></links><search><creatorcontrib>Heorton, Harold D. B. S.</creatorcontrib><creatorcontrib>Feltham, Daniel L.</creatorcontrib><creatorcontrib>Hunt, Julian C. R.</creatorcontrib><title>The Response of the Sea Ice Edge to Atmospheric and Oceanic Jet Formation</title><title>Journal of physical oceanography</title><description>The sea ice edge presents a region of many feedback processes between the atmosphere, ocean, and sea ice (Maslowski et al.). Here the authors focus on the impact of on-ice atmospheric and oceanic flows at the sea ice edge. Mesoscale jet formation due to the Coriolis effect is well understood over sharp changes in surface roughness such as coastlines (Hunt et al.). This sharp change in surface roughness is experienced by the atmosphere and ocean encountering a compacted sea ice edge. This paper presents a study of a dynamic sea ice edge responding to prescribed atmospheric and oceanic jet formation. An idealized analytical model of sea ice drift is developed and compared to a sea ice climate model [the Los Alamos Sea Ice Model (CICE)] run on an idealized domain. The response of the CICE model to jet formation is tested at various resolutions. It is found that the formation of atmospheric jets at the sea ice edge increases the wind speed parallel to the sea ice edge and results in the formation of a sea ice drift jet in agreement with an observed sea ice drift jet (Johannessen et al.). The increase in ice drift speed is dependent upon the angle between the ice edge and wind and results in up to a 40% increase in ice transport along the sea ice edge. The possibility of oceanic jet formation and the resultant effect upon the sea ice edge is less conclusive. Observations and climate model data of the polar oceans have been analyzed to show areas of likely atmospheric jet formation, with the Fram Strait being of particular interest.</description><subject>Atmosphere</subject><subject>Atmospheric boundary layer</subject><subject>Climate</subject><subject>Climate models</subject><subject>Coriolis effect</subject><subject>Drift</subject><subject>Food chains</subject><subject>Ice</subject><subject>Ice drift</subject><subject>Ice edge</subject><subject>Ice formation</subject><subject>Investigations</subject><subject>Marine mammals</subject><subject>Meteorology</subject><subject>Modelling</subject><subject>Ocean currents</subject><subject>Oceans</subject><subject>Sea ice</subject><subject>Sea ice models</subject><subject>Surface roughness</subject><subject>Water flow</subject><subject>Wind</subject><subject>Wind speed</subject><issn>0022-3670</issn><issn>1520-0485</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kT1PwzAURS0EEqUws1piYUl5L7ZjZ6z6Aa0qFUGZLdexaaomDnE68O9JVSYGpnufdHT1pEPIPcIIUYqn5es6mSbIEkDFR3hBBihSSIArcUkGAGmasEzCNbmJcQ8AGab5gCw2O0ffXGxCHR0Nnnb9_e4MXVhHZ8Wno12g464Ksdm5trTU1AVdW2fqvi9dR-ehrUxXhvqWXHlziO7uN4fkYz7bTF6S1fp5MRmvEstRdomxXkkOhmNRcBTCZSLdSm8KpgRYmXuWZwDMCJF7td3mhfeeMZ9D6lApyNiQPJ53mzZ8HV3sdFVG6w4HU7twjBozxIydVnr04Q-6D8e27r_TqcxzhVxy_I9CkaXAOUjZU09nyrYhxtZ53bRlZdpvjaBPAnQvQE81Mn0S0OcPs-91LQ</recordid><startdate>20140901</startdate><enddate>20140901</enddate><creator>Heorton, Harold D. B. S.</creator><creator>Feltham, Daniel L.</creator><creator>Hunt, Julian C. R.</creator><general>American Meteorological Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8AF</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20140901</creationdate><title>The Response of the Sea Ice Edge to Atmospheric and Oceanic Jet Formation</title><author>Heorton, Harold D. B. S. ; Feltham, Daniel L. ; Hunt, Julian C. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c417t-acf8740a41dd4155e652b7fad3850c79f396003a559f8bb9dfff33f902e188063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Atmosphere</topic><topic>Atmospheric boundary layer</topic><topic>Climate</topic><topic>Climate models</topic><topic>Coriolis effect</topic><topic>Drift</topic><topic>Food chains</topic><topic>Ice</topic><topic>Ice drift</topic><topic>Ice edge</topic><topic>Ice formation</topic><topic>Investigations</topic><topic>Marine mammals</topic><topic>Meteorology</topic><topic>Modelling</topic><topic>Ocean currents</topic><topic>Oceans</topic><topic>Sea ice</topic><topic>Sea ice models</topic><topic>Surface roughness</topic><topic>Water flow</topic><topic>Wind</topic><topic>Wind speed</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Heorton, Harold D. B. S.</creatorcontrib><creatorcontrib>Feltham, Daniel L.</creatorcontrib><creatorcontrib>Hunt, Julian C. R.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of physical oceanography</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Heorton, Harold D. B. S.</au><au>Feltham, Daniel L.</au><au>Hunt, Julian C. R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Response of the Sea Ice Edge to Atmospheric and Oceanic Jet Formation</atitle><jtitle>Journal of physical oceanography</jtitle><date>2014-09-01</date><risdate>2014</risdate><volume>44</volume><issue>9</issue><spage>2292</spage><epage>2316</epage><pages>2292-2316</pages><issn>0022-3670</issn><eissn>1520-0485</eissn><abstract>The sea ice edge presents a region of many feedback processes between the atmosphere, ocean, and sea ice (Maslowski et al.). Here the authors focus on the impact of on-ice atmospheric and oceanic flows at the sea ice edge. Mesoscale jet formation due to the Coriolis effect is well understood over sharp changes in surface roughness such as coastlines (Hunt et al.). This sharp change in surface roughness is experienced by the atmosphere and ocean encountering a compacted sea ice edge. This paper presents a study of a dynamic sea ice edge responding to prescribed atmospheric and oceanic jet formation. An idealized analytical model of sea ice drift is developed and compared to a sea ice climate model [the Los Alamos Sea Ice Model (CICE)] run on an idealized domain. The response of the CICE model to jet formation is tested at various resolutions. It is found that the formation of atmospheric jets at the sea ice edge increases the wind speed parallel to the sea ice edge and results in the formation of a sea ice drift jet in agreement with an observed sea ice drift jet (Johannessen et al.). The increase in ice drift speed is dependent upon the angle between the ice edge and wind and results in up to a 40% increase in ice transport along the sea ice edge. The possibility of oceanic jet formation and the resultant effect upon the sea ice edge is less conclusive. Observations and climate model data of the polar oceans have been analyzed to show areas of likely atmospheric jet formation, with the Fram Strait being of particular interest.</abstract><cop>Boston</cop><pub>American Meteorological Society</pub><doi>10.1175/JPO-D-13-0184.1</doi><tpages>25</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-3670
ispartof Journal of physical oceanography, 2014-09, Vol.44 (9), p.2292-2316
issn 0022-3670
1520-0485
language eng
recordid cdi_proquest_miscellaneous_1611633960
source American Meteorological Society; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Atmosphere
Atmospheric boundary layer
Climate
Climate models
Coriolis effect
Drift
Food chains
Ice
Ice drift
Ice edge
Ice formation
Investigations
Marine mammals
Meteorology
Modelling
Ocean currents
Oceans
Sea ice
Sea ice models
Surface roughness
Water flow
Wind
Wind speed
title The Response of the Sea Ice Edge to Atmospheric and Oceanic Jet Formation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T01%3A35%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Response%20of%20the%20Sea%20Ice%20Edge%20to%20Atmospheric%20and%20Oceanic%20Jet%20Formation&rft.jtitle=Journal%20of%20physical%20oceanography&rft.au=Heorton,%20Harold%20D.%20B.%20S.&rft.date=2014-09-01&rft.volume=44&rft.issue=9&rft.spage=2292&rft.epage=2316&rft.pages=2292-2316&rft.issn=0022-3670&rft.eissn=1520-0485&rft_id=info:doi/10.1175/JPO-D-13-0184.1&rft_dat=%3Cproquest_cross%3E1611633960%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1562044077&rft_id=info:pmid/&rfr_iscdi=true