The Response of the Sea Ice Edge to Atmospheric and Oceanic Jet Formation
The sea ice edge presents a region of many feedback processes between the atmosphere, ocean, and sea ice (Maslowski et al.). Here the authors focus on the impact of on-ice atmospheric and oceanic flows at the sea ice edge. Mesoscale jet formation due to the Coriolis effect is well understood over sh...
Gespeichert in:
Veröffentlicht in: | Journal of physical oceanography 2014-09, Vol.44 (9), p.2292-2316 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2316 |
---|---|
container_issue | 9 |
container_start_page | 2292 |
container_title | Journal of physical oceanography |
container_volume | 44 |
creator | Heorton, Harold D. B. S. Feltham, Daniel L. Hunt, Julian C. R. |
description | The sea ice edge presents a region of many feedback processes between the atmosphere, ocean, and sea ice (Maslowski et al.). Here the authors focus on the impact of on-ice atmospheric and oceanic flows at the sea ice edge. Mesoscale jet formation due to the Coriolis effect is well understood over sharp changes in surface roughness such as coastlines (Hunt et al.). This sharp change in surface roughness is experienced by the atmosphere and ocean encountering a compacted sea ice edge. This paper presents a study of a dynamic sea ice edge responding to prescribed atmospheric and oceanic jet formation. An idealized analytical model of sea ice drift is developed and compared to a sea ice climate model [the Los Alamos Sea Ice Model (CICE)] run on an idealized domain. The response of the CICE model to jet formation is tested at various resolutions.
It is found that the formation of atmospheric jets at the sea ice edge increases the wind speed parallel to the sea ice edge and results in the formation of a sea ice drift jet in agreement with an observed sea ice drift jet (Johannessen et al.). The increase in ice drift speed is dependent upon the angle between the ice edge and wind and results in up to a 40% increase in ice transport along the sea ice edge. The possibility of oceanic jet formation and the resultant effect upon the sea ice edge is less conclusive. Observations and climate model data of the polar oceans have been analyzed to show areas of likely atmospheric jet formation, with the Fram Strait being of particular interest. |
doi_str_mv | 10.1175/JPO-D-13-0184.1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1611633960</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1611633960</sourcerecordid><originalsourceid>FETCH-LOGICAL-c417t-acf8740a41dd4155e652b7fad3850c79f396003a559f8bb9dfff33f902e188063</originalsourceid><addsrcrecordid>eNp9kT1PwzAURS0EEqUws1piYUl5L7ZjZ6z6Aa0qFUGZLdexaaomDnE68O9JVSYGpnufdHT1pEPIPcIIUYqn5es6mSbIEkDFR3hBBihSSIArcUkGAGmasEzCNbmJcQ8AGab5gCw2O0ffXGxCHR0Nnnb9_e4MXVhHZ8Wno12g464Ksdm5trTU1AVdW2fqvi9dR-ehrUxXhvqWXHlziO7uN4fkYz7bTF6S1fp5MRmvEstRdomxXkkOhmNRcBTCZSLdSm8KpgRYmXuWZwDMCJF7td3mhfeeMZ9D6lApyNiQPJ53mzZ8HV3sdFVG6w4HU7twjBozxIydVnr04Q-6D8e27r_TqcxzhVxy_I9CkaXAOUjZU09nyrYhxtZ53bRlZdpvjaBPAnQvQE81Mn0S0OcPs-91LQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1562044077</pqid></control><display><type>article</type><title>The Response of the Sea Ice Edge to Atmospheric and Oceanic Jet Formation</title><source>American Meteorological Society</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Heorton, Harold D. B. S. ; Feltham, Daniel L. ; Hunt, Julian C. R.</creator><creatorcontrib>Heorton, Harold D. B. S. ; Feltham, Daniel L. ; Hunt, Julian C. R.</creatorcontrib><description>The sea ice edge presents a region of many feedback processes between the atmosphere, ocean, and sea ice (Maslowski et al.). Here the authors focus on the impact of on-ice atmospheric and oceanic flows at the sea ice edge. Mesoscale jet formation due to the Coriolis effect is well understood over sharp changes in surface roughness such as coastlines (Hunt et al.). This sharp change in surface roughness is experienced by the atmosphere and ocean encountering a compacted sea ice edge. This paper presents a study of a dynamic sea ice edge responding to prescribed atmospheric and oceanic jet formation. An idealized analytical model of sea ice drift is developed and compared to a sea ice climate model [the Los Alamos Sea Ice Model (CICE)] run on an idealized domain. The response of the CICE model to jet formation is tested at various resolutions.
It is found that the formation of atmospheric jets at the sea ice edge increases the wind speed parallel to the sea ice edge and results in the formation of a sea ice drift jet in agreement with an observed sea ice drift jet (Johannessen et al.). The increase in ice drift speed is dependent upon the angle between the ice edge and wind and results in up to a 40% increase in ice transport along the sea ice edge. The possibility of oceanic jet formation and the resultant effect upon the sea ice edge is less conclusive. Observations and climate model data of the polar oceans have been analyzed to show areas of likely atmospheric jet formation, with the Fram Strait being of particular interest.</description><identifier>ISSN: 0022-3670</identifier><identifier>EISSN: 1520-0485</identifier><identifier>DOI: 10.1175/JPO-D-13-0184.1</identifier><language>eng</language><publisher>Boston: American Meteorological Society</publisher><subject>Atmosphere ; Atmospheric boundary layer ; Climate ; Climate models ; Coriolis effect ; Drift ; Food chains ; Ice ; Ice drift ; Ice edge ; Ice formation ; Investigations ; Marine mammals ; Meteorology ; Modelling ; Ocean currents ; Oceans ; Sea ice ; Sea ice models ; Surface roughness ; Water flow ; Wind ; Wind speed</subject><ispartof>Journal of physical oceanography, 2014-09, Vol.44 (9), p.2292-2316</ispartof><rights>Copyright American Meteorological Society Sep 2014</rights><rights>Copyright American Meteorological Society 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c417t-acf8740a41dd4155e652b7fad3850c79f396003a559f8bb9dfff33f902e188063</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,3668,27905,27906</link.rule.ids></links><search><creatorcontrib>Heorton, Harold D. B. S.</creatorcontrib><creatorcontrib>Feltham, Daniel L.</creatorcontrib><creatorcontrib>Hunt, Julian C. R.</creatorcontrib><title>The Response of the Sea Ice Edge to Atmospheric and Oceanic Jet Formation</title><title>Journal of physical oceanography</title><description>The sea ice edge presents a region of many feedback processes between the atmosphere, ocean, and sea ice (Maslowski et al.). Here the authors focus on the impact of on-ice atmospheric and oceanic flows at the sea ice edge. Mesoscale jet formation due to the Coriolis effect is well understood over sharp changes in surface roughness such as coastlines (Hunt et al.). This sharp change in surface roughness is experienced by the atmosphere and ocean encountering a compacted sea ice edge. This paper presents a study of a dynamic sea ice edge responding to prescribed atmospheric and oceanic jet formation. An idealized analytical model of sea ice drift is developed and compared to a sea ice climate model [the Los Alamos Sea Ice Model (CICE)] run on an idealized domain. The response of the CICE model to jet formation is tested at various resolutions.
It is found that the formation of atmospheric jets at the sea ice edge increases the wind speed parallel to the sea ice edge and results in the formation of a sea ice drift jet in agreement with an observed sea ice drift jet (Johannessen et al.). The increase in ice drift speed is dependent upon the angle between the ice edge and wind and results in up to a 40% increase in ice transport along the sea ice edge. The possibility of oceanic jet formation and the resultant effect upon the sea ice edge is less conclusive. Observations and climate model data of the polar oceans have been analyzed to show areas of likely atmospheric jet formation, with the Fram Strait being of particular interest.</description><subject>Atmosphere</subject><subject>Atmospheric boundary layer</subject><subject>Climate</subject><subject>Climate models</subject><subject>Coriolis effect</subject><subject>Drift</subject><subject>Food chains</subject><subject>Ice</subject><subject>Ice drift</subject><subject>Ice edge</subject><subject>Ice formation</subject><subject>Investigations</subject><subject>Marine mammals</subject><subject>Meteorology</subject><subject>Modelling</subject><subject>Ocean currents</subject><subject>Oceans</subject><subject>Sea ice</subject><subject>Sea ice models</subject><subject>Surface roughness</subject><subject>Water flow</subject><subject>Wind</subject><subject>Wind speed</subject><issn>0022-3670</issn><issn>1520-0485</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kT1PwzAURS0EEqUws1piYUl5L7ZjZ6z6Aa0qFUGZLdexaaomDnE68O9JVSYGpnufdHT1pEPIPcIIUYqn5es6mSbIEkDFR3hBBihSSIArcUkGAGmasEzCNbmJcQ8AGab5gCw2O0ffXGxCHR0Nnnb9_e4MXVhHZ8Wno12g464Ksdm5trTU1AVdW2fqvi9dR-ehrUxXhvqWXHlziO7uN4fkYz7bTF6S1fp5MRmvEstRdomxXkkOhmNRcBTCZSLdSm8KpgRYmXuWZwDMCJF7td3mhfeeMZ9D6lApyNiQPJ53mzZ8HV3sdFVG6w4HU7twjBozxIydVnr04Q-6D8e27r_TqcxzhVxy_I9CkaXAOUjZU09nyrYhxtZ53bRlZdpvjaBPAnQvQE81Mn0S0OcPs-91LQ</recordid><startdate>20140901</startdate><enddate>20140901</enddate><creator>Heorton, Harold D. B. S.</creator><creator>Feltham, Daniel L.</creator><creator>Hunt, Julian C. R.</creator><general>American Meteorological Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8AF</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20140901</creationdate><title>The Response of the Sea Ice Edge to Atmospheric and Oceanic Jet Formation</title><author>Heorton, Harold D. B. S. ; Feltham, Daniel L. ; Hunt, Julian C. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c417t-acf8740a41dd4155e652b7fad3850c79f396003a559f8bb9dfff33f902e188063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Atmosphere</topic><topic>Atmospheric boundary layer</topic><topic>Climate</topic><topic>Climate models</topic><topic>Coriolis effect</topic><topic>Drift</topic><topic>Food chains</topic><topic>Ice</topic><topic>Ice drift</topic><topic>Ice edge</topic><topic>Ice formation</topic><topic>Investigations</topic><topic>Marine mammals</topic><topic>Meteorology</topic><topic>Modelling</topic><topic>Ocean currents</topic><topic>Oceans</topic><topic>Sea ice</topic><topic>Sea ice models</topic><topic>Surface roughness</topic><topic>Water flow</topic><topic>Wind</topic><topic>Wind speed</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Heorton, Harold D. B. S.</creatorcontrib><creatorcontrib>Feltham, Daniel L.</creatorcontrib><creatorcontrib>Hunt, Julian C. R.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of physical oceanography</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Heorton, Harold D. B. S.</au><au>Feltham, Daniel L.</au><au>Hunt, Julian C. R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Response of the Sea Ice Edge to Atmospheric and Oceanic Jet Formation</atitle><jtitle>Journal of physical oceanography</jtitle><date>2014-09-01</date><risdate>2014</risdate><volume>44</volume><issue>9</issue><spage>2292</spage><epage>2316</epage><pages>2292-2316</pages><issn>0022-3670</issn><eissn>1520-0485</eissn><abstract>The sea ice edge presents a region of many feedback processes between the atmosphere, ocean, and sea ice (Maslowski et al.). Here the authors focus on the impact of on-ice atmospheric and oceanic flows at the sea ice edge. Mesoscale jet formation due to the Coriolis effect is well understood over sharp changes in surface roughness such as coastlines (Hunt et al.). This sharp change in surface roughness is experienced by the atmosphere and ocean encountering a compacted sea ice edge. This paper presents a study of a dynamic sea ice edge responding to prescribed atmospheric and oceanic jet formation. An idealized analytical model of sea ice drift is developed and compared to a sea ice climate model [the Los Alamos Sea Ice Model (CICE)] run on an idealized domain. The response of the CICE model to jet formation is tested at various resolutions.
It is found that the formation of atmospheric jets at the sea ice edge increases the wind speed parallel to the sea ice edge and results in the formation of a sea ice drift jet in agreement with an observed sea ice drift jet (Johannessen et al.). The increase in ice drift speed is dependent upon the angle between the ice edge and wind and results in up to a 40% increase in ice transport along the sea ice edge. The possibility of oceanic jet formation and the resultant effect upon the sea ice edge is less conclusive. Observations and climate model data of the polar oceans have been analyzed to show areas of likely atmospheric jet formation, with the Fram Strait being of particular interest.</abstract><cop>Boston</cop><pub>American Meteorological Society</pub><doi>10.1175/JPO-D-13-0184.1</doi><tpages>25</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-3670 |
ispartof | Journal of physical oceanography, 2014-09, Vol.44 (9), p.2292-2316 |
issn | 0022-3670 1520-0485 |
language | eng |
recordid | cdi_proquest_miscellaneous_1611633960 |
source | American Meteorological Society; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Atmosphere Atmospheric boundary layer Climate Climate models Coriolis effect Drift Food chains Ice Ice drift Ice edge Ice formation Investigations Marine mammals Meteorology Modelling Ocean currents Oceans Sea ice Sea ice models Surface roughness Water flow Wind Wind speed |
title | The Response of the Sea Ice Edge to Atmospheric and Oceanic Jet Formation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T01%3A35%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Response%20of%20the%20Sea%20Ice%20Edge%20to%20Atmospheric%20and%20Oceanic%20Jet%20Formation&rft.jtitle=Journal%20of%20physical%20oceanography&rft.au=Heorton,%20Harold%20D.%20B.%20S.&rft.date=2014-09-01&rft.volume=44&rft.issue=9&rft.spage=2292&rft.epage=2316&rft.pages=2292-2316&rft.issn=0022-3670&rft.eissn=1520-0485&rft_id=info:doi/10.1175/JPO-D-13-0184.1&rft_dat=%3Cproquest_cross%3E1611633960%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1562044077&rft_id=info:pmid/&rfr_iscdi=true |