Bacterial microbiome of Coptotermes curvignathus (Isoptera: Rhinotermitidae) reflects the coevolution of species and dietary pattern
Coptotermes curvignathus Holmgren is capable of feeding on living trees. This ability is attributed to their effective digestive system that is furnished by the termite's own cellulolytic enzymes and cooperative enzymes produced by their gut microbes. In this study, the identity of an array of...
Gespeichert in:
Veröffentlicht in: | Insect science 2014-10, Vol.21 (5), p.584-596 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 596 |
---|---|
container_issue | 5 |
container_start_page | 584 |
container_title | Insect science |
container_volume | 21 |
creator | King, Jie Hung Patricia Mahadi, Nor Muhammad Bong, Choon Fah Joseph Ong, Kian Huat Hassan, Osman |
description | Coptotermes curvignathus Holmgren is capable of feeding on living trees. This ability is attributed to their effective digestive system that is furnished by the termite's own cellulolytic enzymes and cooperative enzymes produced by their gut microbes. In this study, the identity of an array of diverse microbes residing in the gut of C. curvignathus was revealed by sequencing the near‐full‐length 16S rRNA genes. A total of 154 bacterial phylotypes were found. The Bacteroidetes was the most abundant phylum and accounted for about 65% of the gut microbial profile. This is followed by Firmicutes, Actinobacteria, Spirochetes, Proteobacteria, TM7, Deferribacteres, Planctomycetes, Verrucomicrobia, and Termite Group 1. Based on the phylogenetic study, this symbiosis can be a result of long coevolution of gut enterotypes with the phylogenic distribution, strong selection pressure in the gut, and other speculative pressures that determine bacterial biome to follow. The phylogenetic distribution of cloned rRNA genes in the bacterial domain that was considerably different from other termite reflects the strong selection pressures in the gut where a proportional composition of gut microbiome of C. curvignathus has established. The selection pressures could be linked to the unique diet preference of C. curvignathus that profoundly feeds on living trees. The delicate gut microbiome composition may provide available nutrients to the host as well as potential protection against opportunistic pathogen. |
doi_str_mv | 10.1111/1744-7917.12061 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1611621955</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1611621955</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6191-5506dd88ae4e8f1b7326bc095d43dbb5660feff3f72b51a751f1e55cf3178c0b3</originalsourceid><addsrcrecordid>eNqFkcFvFCEYxSdGY2v17M2QeKmHaYEZYPCmG223qTWxmj0ShvlwqTPDCEy1d__wst12D17KBcL3e4_wXlG8JviI5HVMRF2XQhJxRCjm5Emxv7t5ms9c0FJyLPeKFzFeYVxJKunzYo_WhFaykfvFv4_aJAhO92hwJvjW-QGQt2jhp-TzZICIzByu3c9Rp_Uc0eEy5hEE_R59W7vxjnHJdRreoQC2B5MiSmtAxsO17-fk_LgxjBMYl8302KHOQdLhBk06Zfn4snhmdR_h1f1-UPz4_On74rQ8_3qyXHw4Lw0nkpSMYd51TaOhhsaSVlSUtwZL1tVV17aMc2zB2soK2jKiBSOWAGPGVkQ0BrfVQXG49Z2C_z1DTGpw0UDf6xH8HBXhhHBKJGOPo_k1gkUtZEbf_ode-TmM-SMbijFaM0Ezdbylcsgx5qDUFNyQQ1AEq02XatOc2jSn7rrMijf3vnM7QLfjH8rLANsCf1wPN4_5qeXF5YNxudW5mODvTqfDL8VFJZhaXZyoy7PVGV99oaqubgGqrblu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1565524572</pqid></control><display><type>article</type><title>Bacterial microbiome of Coptotermes curvignathus (Isoptera: Rhinotermitidae) reflects the coevolution of species and dietary pattern</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>King, Jie Hung Patricia ; Mahadi, Nor Muhammad ; Bong, Choon Fah Joseph ; Ong, Kian Huat ; Hassan, Osman</creator><creatorcontrib>King, Jie Hung Patricia ; Mahadi, Nor Muhammad ; Bong, Choon Fah Joseph ; Ong, Kian Huat ; Hassan, Osman</creatorcontrib><description>Coptotermes curvignathus Holmgren is capable of feeding on living trees. This ability is attributed to their effective digestive system that is furnished by the termite's own cellulolytic enzymes and cooperative enzymes produced by their gut microbes. In this study, the identity of an array of diverse microbes residing in the gut of C. curvignathus was revealed by sequencing the near‐full‐length 16S rRNA genes. A total of 154 bacterial phylotypes were found. The Bacteroidetes was the most abundant phylum and accounted for about 65% of the gut microbial profile. This is followed by Firmicutes, Actinobacteria, Spirochetes, Proteobacteria, TM7, Deferribacteres, Planctomycetes, Verrucomicrobia, and Termite Group 1. Based on the phylogenetic study, this symbiosis can be a result of long coevolution of gut enterotypes with the phylogenic distribution, strong selection pressure in the gut, and other speculative pressures that determine bacterial biome to follow. The phylogenetic distribution of cloned rRNA genes in the bacterial domain that was considerably different from other termite reflects the strong selection pressures in the gut where a proportional composition of gut microbiome of C. curvignathus has established. The selection pressures could be linked to the unique diet preference of C. curvignathus that profoundly feeds on living trees. The delicate gut microbiome composition may provide available nutrients to the host as well as potential protection against opportunistic pathogen.</description><identifier>ISSN: 1672-9609</identifier><identifier>EISSN: 1744-7917</identifier><identifier>DOI: 10.1111/1744-7917.12061</identifier><identifier>PMID: 24123989</identifier><language>eng</language><publisher>Australia: Blackwell Publishing Ltd</publisher><subject>Actinobacteria ; Animals ; Bacteria - classification ; Bacteria - genetics ; Bacteria - isolation & purification ; Bacterial Physiological Phenomena ; Bacterial Proteins - genetics ; Biological Evolution ; Coptotermes ; Coptotermes curvignathus ; Diet ; diet preference ; Enzymes ; Evolution ; Firmicutes ; Gastrointestinal Tract - microbiology ; gut microbiome ; Immunity, Innate ; Isoptera ; Isoptera - immunology ; Isoptera - microbiology ; Isoptera - physiology ; Microbiota ; Molecular Sequence Data ; Phylogenetics ; Phylogeny ; Planctomycetes ; Proteobacteria ; Rhinotermitidae ; RNA, Ribosomal, 16S - genetics ; selection ; Sequence Analysis, DNA ; Symbiosis ; Verrucomicrobia</subject><ispartof>Insect science, 2014-10, Vol.21 (5), p.584-596</ispartof><rights>2013 Institute of Zoology, Chinese Academy of Sciences</rights><rights>2013 Institute of Zoology, Chinese Academy of Sciences.</rights><rights>Copyright © 2014 Institute of Zoology, Chinese Academy of Sciences</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6191-5506dd88ae4e8f1b7326bc095d43dbb5660feff3f72b51a751f1e55cf3178c0b3</citedby><cites>FETCH-LOGICAL-c6191-5506dd88ae4e8f1b7326bc095d43dbb5660feff3f72b51a751f1e55cf3178c0b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2F1744-7917.12061$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2F1744-7917.12061$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,782,786,1419,27931,27932,45581,45582</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24123989$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>King, Jie Hung Patricia</creatorcontrib><creatorcontrib>Mahadi, Nor Muhammad</creatorcontrib><creatorcontrib>Bong, Choon Fah Joseph</creatorcontrib><creatorcontrib>Ong, Kian Huat</creatorcontrib><creatorcontrib>Hassan, Osman</creatorcontrib><title>Bacterial microbiome of Coptotermes curvignathus (Isoptera: Rhinotermitidae) reflects the coevolution of species and dietary pattern</title><title>Insect science</title><addtitle>Insect Science</addtitle><description>Coptotermes curvignathus Holmgren is capable of feeding on living trees. This ability is attributed to their effective digestive system that is furnished by the termite's own cellulolytic enzymes and cooperative enzymes produced by their gut microbes. In this study, the identity of an array of diverse microbes residing in the gut of C. curvignathus was revealed by sequencing the near‐full‐length 16S rRNA genes. A total of 154 bacterial phylotypes were found. The Bacteroidetes was the most abundant phylum and accounted for about 65% of the gut microbial profile. This is followed by Firmicutes, Actinobacteria, Spirochetes, Proteobacteria, TM7, Deferribacteres, Planctomycetes, Verrucomicrobia, and Termite Group 1. Based on the phylogenetic study, this symbiosis can be a result of long coevolution of gut enterotypes with the phylogenic distribution, strong selection pressure in the gut, and other speculative pressures that determine bacterial biome to follow. The phylogenetic distribution of cloned rRNA genes in the bacterial domain that was considerably different from other termite reflects the strong selection pressures in the gut where a proportional composition of gut microbiome of C. curvignathus has established. The selection pressures could be linked to the unique diet preference of C. curvignathus that profoundly feeds on living trees. The delicate gut microbiome composition may provide available nutrients to the host as well as potential protection against opportunistic pathogen.</description><subject>Actinobacteria</subject><subject>Animals</subject><subject>Bacteria - classification</subject><subject>Bacteria - genetics</subject><subject>Bacteria - isolation & purification</subject><subject>Bacterial Physiological Phenomena</subject><subject>Bacterial Proteins - genetics</subject><subject>Biological Evolution</subject><subject>Coptotermes</subject><subject>Coptotermes curvignathus</subject><subject>Diet</subject><subject>diet preference</subject><subject>Enzymes</subject><subject>Evolution</subject><subject>Firmicutes</subject><subject>Gastrointestinal Tract - microbiology</subject><subject>gut microbiome</subject><subject>Immunity, Innate</subject><subject>Isoptera</subject><subject>Isoptera - immunology</subject><subject>Isoptera - microbiology</subject><subject>Isoptera - physiology</subject><subject>Microbiota</subject><subject>Molecular Sequence Data</subject><subject>Phylogenetics</subject><subject>Phylogeny</subject><subject>Planctomycetes</subject><subject>Proteobacteria</subject><subject>Rhinotermitidae</subject><subject>RNA, Ribosomal, 16S - genetics</subject><subject>selection</subject><subject>Sequence Analysis, DNA</subject><subject>Symbiosis</subject><subject>Verrucomicrobia</subject><issn>1672-9609</issn><issn>1744-7917</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkcFvFCEYxSdGY2v17M2QeKmHaYEZYPCmG223qTWxmj0ShvlwqTPDCEy1d__wst12D17KBcL3e4_wXlG8JviI5HVMRF2XQhJxRCjm5Emxv7t5ms9c0FJyLPeKFzFeYVxJKunzYo_WhFaykfvFv4_aJAhO92hwJvjW-QGQt2jhp-TzZICIzByu3c9Rp_Uc0eEy5hEE_R59W7vxjnHJdRreoQC2B5MiSmtAxsO17-fk_LgxjBMYl8302KHOQdLhBk06Zfn4snhmdR_h1f1-UPz4_On74rQ8_3qyXHw4Lw0nkpSMYd51TaOhhsaSVlSUtwZL1tVV17aMc2zB2soK2jKiBSOWAGPGVkQ0BrfVQXG49Z2C_z1DTGpw0UDf6xH8HBXhhHBKJGOPo_k1gkUtZEbf_ode-TmM-SMbijFaM0Ezdbylcsgx5qDUFNyQQ1AEq02XatOc2jSn7rrMijf3vnM7QLfjH8rLANsCf1wPN4_5qeXF5YNxudW5mODvTqfDL8VFJZhaXZyoy7PVGV99oaqubgGqrblu</recordid><startdate>201410</startdate><enddate>201410</enddate><creator>King, Jie Hung Patricia</creator><creator>Mahadi, Nor Muhammad</creator><creator>Bong, Choon Fah Joseph</creator><creator>Ong, Kian Huat</creator><creator>Hassan, Osman</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope><scope>7QL</scope></search><sort><creationdate>201410</creationdate><title>Bacterial microbiome of Coptotermes curvignathus (Isoptera: Rhinotermitidae) reflects the coevolution of species and dietary pattern</title><author>King, Jie Hung Patricia ; Mahadi, Nor Muhammad ; Bong, Choon Fah Joseph ; Ong, Kian Huat ; Hassan, Osman</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6191-5506dd88ae4e8f1b7326bc095d43dbb5660feff3f72b51a751f1e55cf3178c0b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Actinobacteria</topic><topic>Animals</topic><topic>Bacteria - classification</topic><topic>Bacteria - genetics</topic><topic>Bacteria - isolation & purification</topic><topic>Bacterial Physiological Phenomena</topic><topic>Bacterial Proteins - genetics</topic><topic>Biological Evolution</topic><topic>Coptotermes</topic><topic>Coptotermes curvignathus</topic><topic>Diet</topic><topic>diet preference</topic><topic>Enzymes</topic><topic>Evolution</topic><topic>Firmicutes</topic><topic>Gastrointestinal Tract - microbiology</topic><topic>gut microbiome</topic><topic>Immunity, Innate</topic><topic>Isoptera</topic><topic>Isoptera - immunology</topic><topic>Isoptera - microbiology</topic><topic>Isoptera - physiology</topic><topic>Microbiota</topic><topic>Molecular Sequence Data</topic><topic>Phylogenetics</topic><topic>Phylogeny</topic><topic>Planctomycetes</topic><topic>Proteobacteria</topic><topic>Rhinotermitidae</topic><topic>RNA, Ribosomal, 16S - genetics</topic><topic>selection</topic><topic>Sequence Analysis, DNA</topic><topic>Symbiosis</topic><topic>Verrucomicrobia</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>King, Jie Hung Patricia</creatorcontrib><creatorcontrib>Mahadi, Nor Muhammad</creatorcontrib><creatorcontrib>Bong, Choon Fah Joseph</creatorcontrib><creatorcontrib>Ong, Kian Huat</creatorcontrib><creatorcontrib>Hassan, Osman</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><jtitle>Insect science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>King, Jie Hung Patricia</au><au>Mahadi, Nor Muhammad</au><au>Bong, Choon Fah Joseph</au><au>Ong, Kian Huat</au><au>Hassan, Osman</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bacterial microbiome of Coptotermes curvignathus (Isoptera: Rhinotermitidae) reflects the coevolution of species and dietary pattern</atitle><jtitle>Insect science</jtitle><addtitle>Insect Science</addtitle><date>2014-10</date><risdate>2014</risdate><volume>21</volume><issue>5</issue><spage>584</spage><epage>596</epage><pages>584-596</pages><issn>1672-9609</issn><eissn>1744-7917</eissn><abstract>Coptotermes curvignathus Holmgren is capable of feeding on living trees. This ability is attributed to their effective digestive system that is furnished by the termite's own cellulolytic enzymes and cooperative enzymes produced by their gut microbes. In this study, the identity of an array of diverse microbes residing in the gut of C. curvignathus was revealed by sequencing the near‐full‐length 16S rRNA genes. A total of 154 bacterial phylotypes were found. The Bacteroidetes was the most abundant phylum and accounted for about 65% of the gut microbial profile. This is followed by Firmicutes, Actinobacteria, Spirochetes, Proteobacteria, TM7, Deferribacteres, Planctomycetes, Verrucomicrobia, and Termite Group 1. Based on the phylogenetic study, this symbiosis can be a result of long coevolution of gut enterotypes with the phylogenic distribution, strong selection pressure in the gut, and other speculative pressures that determine bacterial biome to follow. The phylogenetic distribution of cloned rRNA genes in the bacterial domain that was considerably different from other termite reflects the strong selection pressures in the gut where a proportional composition of gut microbiome of C. curvignathus has established. The selection pressures could be linked to the unique diet preference of C. curvignathus that profoundly feeds on living trees. The delicate gut microbiome composition may provide available nutrients to the host as well as potential protection against opportunistic pathogen.</abstract><cop>Australia</cop><pub>Blackwell Publishing Ltd</pub><pmid>24123989</pmid><doi>10.1111/1744-7917.12061</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1672-9609 |
ispartof | Insect science, 2014-10, Vol.21 (5), p.584-596 |
issn | 1672-9609 1744-7917 |
language | eng |
recordid | cdi_proquest_miscellaneous_1611621955 |
source | MEDLINE; Access via Wiley Online Library |
subjects | Actinobacteria Animals Bacteria - classification Bacteria - genetics Bacteria - isolation & purification Bacterial Physiological Phenomena Bacterial Proteins - genetics Biological Evolution Coptotermes Coptotermes curvignathus Diet diet preference Enzymes Evolution Firmicutes Gastrointestinal Tract - microbiology gut microbiome Immunity, Innate Isoptera Isoptera - immunology Isoptera - microbiology Isoptera - physiology Microbiota Molecular Sequence Data Phylogenetics Phylogeny Planctomycetes Proteobacteria Rhinotermitidae RNA, Ribosomal, 16S - genetics selection Sequence Analysis, DNA Symbiosis Verrucomicrobia |
title | Bacterial microbiome of Coptotermes curvignathus (Isoptera: Rhinotermitidae) reflects the coevolution of species and dietary pattern |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T12%3A46%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bacterial%20microbiome%20of%20Coptotermes%20curvignathus%20(Isoptera:%20Rhinotermitidae)%20reflects%20the%20coevolution%20of%20species%20and%20dietary%20pattern&rft.jtitle=Insect%20science&rft.au=King,%20Jie%20Hung%20Patricia&rft.date=2014-10&rft.volume=21&rft.issue=5&rft.spage=584&rft.epage=596&rft.pages=584-596&rft.issn=1672-9609&rft.eissn=1744-7917&rft_id=info:doi/10.1111/1744-7917.12061&rft_dat=%3Cproquest_cross%3E1611621955%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1565524572&rft_id=info:pmid/24123989&rfr_iscdi=true |