Magnetic poly(ε-caprolactone)/iron-doped hydroxyapatite nanocomposite substrates for advanced bone tissue engineering

In biomedicine, magnetic nanoparticles provide some attractive possibilities because they possess peculiar physical properties that permit their use in a wide range of applications. The concept of magnetic guidance basically spans from drug delivery and hyperthermia treatment of tumours, to tissue e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Royal Society interface 2013-03, Vol.10 (80), p.20120833-20120833
Hauptverfasser: Gloria, A., Russo, T., D'Amora, U., Zeppetelli, S., D'Alessandro, T., Sandri, M., Bañobre-López, M., Piñeiro-Redondo, Y., Uhlarz, M., Tampieri, A., Rivas, J., Herrmannsdörfer, T., Dediu, V. A., Ambrosio, L., De Santis, R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 20120833
container_issue 80
container_start_page 20120833
container_title Journal of the Royal Society interface
container_volume 10
creator Gloria, A.
Russo, T.
D'Amora, U.
Zeppetelli, S.
D'Alessandro, T.
Sandri, M.
Bañobre-López, M.
Piñeiro-Redondo, Y.
Uhlarz, M.
Tampieri, A.
Rivas, J.
Herrmannsdörfer, T.
Dediu, V. A.
Ambrosio, L.
De Santis, R.
description In biomedicine, magnetic nanoparticles provide some attractive possibilities because they possess peculiar physical properties that permit their use in a wide range of applications. The concept of magnetic guidance basically spans from drug delivery and hyperthermia treatment of tumours, to tissue engineering, such as magneto-mechanical stimulation/activation of cell constructs and mechanosensitive ion channels, magnetic cell-seeding procedures, and controlled cell proliferation and differentiation. Accordingly, the aim of this study was to develop fully biodegradable and magnetic nanocomposite substrates for bone tissue engineering by embedding iron-doped hydroxyapatite (FeHA) nanoparticles in a poly(ε-caprolactone) (PCL) matrix. X-ray diffraction analyses enabled the demonstration that the phase composition and crystallinity of the magnetic FeHA were not affected by the process used to develop the nanocomposite substrates. The mechanical characterization performed through small punch tests has evidenced that inclusion of 10 per cent by weight of FeHA would represent an effective reinforcement. The inclusion of nanoparticles also improves the hydrophilicity of the substrates as evidenced by the lower values of water contact angle in comparison with those of neat PCL. The results from magnetic measurements confirmed the superparamagnetic character of the nanocomposite substrates, indicated by a very low coercive field, a saturation magnetization strictly proportional to the FeHA content and a strong history dependence in temperature sweeps. Regarding the biological performances, confocal laser scanning microscopy and AlamarBlue assay have provided qualitative and quantitative information on human mesenchymal stem cell adhesion and viability/proliferation, respectively, whereas the obtained ALP/DNA values have shown the ability of the nanocomposite substrates to support osteogenic differentiation.
doi_str_mv 10.1098/rsif.2012.0833
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1611618561</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1611618561</sourcerecordid><originalsourceid>FETCH-LOGICAL-c505t-a0c5ec996a565ee27a14a9a7f89a5161e1d305b8c06ae4f62b40b930a1677bda3</originalsourceid><addsrcrecordid>eNp1kc9u1DAQxi0EoqVw5YhyLIds7Th2kgsSXfF_ERIqHLhYE2eydcnawXZWzYPxGjwTjras4IBkyR75m998mo-Qp4yuGG3qCx9MvyooK1a05vweOWVVWeRCyuL-8V03J-RRCDeU8ooL8ZCcFJxTXrD6lOw_wtZiNDob3TCf__qZaxi9G0BHZ_H5hfHO5p0bscuu58672xlGiCZiZsE67XajC0sVpjZEDxFD1jufQbcHq1NTmyhZNCFMmKHdGovojd0-Jg96GAI-ubvPyJfXr67Wb_PNpzfv1i83uRZUxByoFqibRoKQArGogJXQQNXXDQgmGbKOU9HWmkrAspdFW9K24RSYrKq2A35GXhy449TusNNok8lBjd7swM_KgVH__lhzrbZur3gaWHGeAOd3AO9-TBii2pmgcRjAopuCSibSqYVkSbo6SLV3IXjsj2MYVUtYaglLLWGpJazU8Oxvc0f5n3SSgB8E3s1pS04bjLO6cZO3qfw_Nj90mRDx9kgF_13JildCfa1LtX7_-Wr9YXOpvvHfNbC2aA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1611618561</pqid></control><display><type>article</type><title>Magnetic poly(ε-caprolactone)/iron-doped hydroxyapatite nanocomposite substrates for advanced bone tissue engineering</title><source>MEDLINE</source><source>PubMed Central</source><creator>Gloria, A. ; Russo, T. ; D'Amora, U. ; Zeppetelli, S. ; D'Alessandro, T. ; Sandri, M. ; Bañobre-López, M. ; Piñeiro-Redondo, Y. ; Uhlarz, M. ; Tampieri, A. ; Rivas, J. ; Herrmannsdörfer, T. ; Dediu, V. A. ; Ambrosio, L. ; De Santis, R.</creator><creatorcontrib>Gloria, A. ; Russo, T. ; D'Amora, U. ; Zeppetelli, S. ; D'Alessandro, T. ; Sandri, M. ; Bañobre-López, M. ; Piñeiro-Redondo, Y. ; Uhlarz, M. ; Tampieri, A. ; Rivas, J. ; Herrmannsdörfer, T. ; Dediu, V. A. ; Ambrosio, L. ; De Santis, R.</creatorcontrib><description>In biomedicine, magnetic nanoparticles provide some attractive possibilities because they possess peculiar physical properties that permit their use in a wide range of applications. The concept of magnetic guidance basically spans from drug delivery and hyperthermia treatment of tumours, to tissue engineering, such as magneto-mechanical stimulation/activation of cell constructs and mechanosensitive ion channels, magnetic cell-seeding procedures, and controlled cell proliferation and differentiation. Accordingly, the aim of this study was to develop fully biodegradable and magnetic nanocomposite substrates for bone tissue engineering by embedding iron-doped hydroxyapatite (FeHA) nanoparticles in a poly(ε-caprolactone) (PCL) matrix. X-ray diffraction analyses enabled the demonstration that the phase composition and crystallinity of the magnetic FeHA were not affected by the process used to develop the nanocomposite substrates. The mechanical characterization performed through small punch tests has evidenced that inclusion of 10 per cent by weight of FeHA would represent an effective reinforcement. The inclusion of nanoparticles also improves the hydrophilicity of the substrates as evidenced by the lower values of water contact angle in comparison with those of neat PCL. The results from magnetic measurements confirmed the superparamagnetic character of the nanocomposite substrates, indicated by a very low coercive field, a saturation magnetization strictly proportional to the FeHA content and a strong history dependence in temperature sweeps. Regarding the biological performances, confocal laser scanning microscopy and AlamarBlue assay have provided qualitative and quantitative information on human mesenchymal stem cell adhesion and viability/proliferation, respectively, whereas the obtained ALP/DNA values have shown the ability of the nanocomposite substrates to support osteogenic differentiation.</description><identifier>ISSN: 1742-5689</identifier><identifier>EISSN: 1742-5662</identifier><identifier>DOI: 10.1098/rsif.2012.0833</identifier><identifier>PMID: 23303218</identifier><language>eng</language><publisher>England: The Royal Society</publisher><subject>Bone and Bones - cytology ; Bone and Bones - metabolism ; Bone Tissue Regeneration ; Cell Adhesion ; Cell Survival ; Cells, Cultured ; Durapatite - chemistry ; Humans ; Iron - chemistry ; Magnetic Hydroxyapatite ; Magnetics ; Materials Testing - methods ; Mesenchymal Stromal Cells - cytology ; Mesenchymal Stromal Cells - metabolism ; Nanocomposite ; Nanocomposites - chemistry ; poly(ε-caprolactone) ; Polyesters - chemistry ; Scaffold ; Tissue Engineering - methods</subject><ispartof>Journal of the Royal Society interface, 2013-03, Vol.10 (80), p.20120833-20120833</ispartof><rights>2013 The Author(s) Published by the Royal Society. All rights reserved.</rights><rights>2013 The Author(s) Published by the Royal Society. All rights reserved. 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c505t-a0c5ec996a565ee27a14a9a7f89a5161e1d305b8c06ae4f62b40b930a1677bda3</citedby><cites>FETCH-LOGICAL-c505t-a0c5ec996a565ee27a14a9a7f89a5161e1d305b8c06ae4f62b40b930a1677bda3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3565733/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3565733/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23303218$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gloria, A.</creatorcontrib><creatorcontrib>Russo, T.</creatorcontrib><creatorcontrib>D'Amora, U.</creatorcontrib><creatorcontrib>Zeppetelli, S.</creatorcontrib><creatorcontrib>D'Alessandro, T.</creatorcontrib><creatorcontrib>Sandri, M.</creatorcontrib><creatorcontrib>Bañobre-López, M.</creatorcontrib><creatorcontrib>Piñeiro-Redondo, Y.</creatorcontrib><creatorcontrib>Uhlarz, M.</creatorcontrib><creatorcontrib>Tampieri, A.</creatorcontrib><creatorcontrib>Rivas, J.</creatorcontrib><creatorcontrib>Herrmannsdörfer, T.</creatorcontrib><creatorcontrib>Dediu, V. A.</creatorcontrib><creatorcontrib>Ambrosio, L.</creatorcontrib><creatorcontrib>De Santis, R.</creatorcontrib><title>Magnetic poly(ε-caprolactone)/iron-doped hydroxyapatite nanocomposite substrates for advanced bone tissue engineering</title><title>Journal of the Royal Society interface</title><addtitle>J. R. Soc. Interface</addtitle><addtitle>J. R. Soc. Interface</addtitle><description>In biomedicine, magnetic nanoparticles provide some attractive possibilities because they possess peculiar physical properties that permit their use in a wide range of applications. The concept of magnetic guidance basically spans from drug delivery and hyperthermia treatment of tumours, to tissue engineering, such as magneto-mechanical stimulation/activation of cell constructs and mechanosensitive ion channels, magnetic cell-seeding procedures, and controlled cell proliferation and differentiation. Accordingly, the aim of this study was to develop fully biodegradable and magnetic nanocomposite substrates for bone tissue engineering by embedding iron-doped hydroxyapatite (FeHA) nanoparticles in a poly(ε-caprolactone) (PCL) matrix. X-ray diffraction analyses enabled the demonstration that the phase composition and crystallinity of the magnetic FeHA were not affected by the process used to develop the nanocomposite substrates. The mechanical characterization performed through small punch tests has evidenced that inclusion of 10 per cent by weight of FeHA would represent an effective reinforcement. The inclusion of nanoparticles also improves the hydrophilicity of the substrates as evidenced by the lower values of water contact angle in comparison with those of neat PCL. The results from magnetic measurements confirmed the superparamagnetic character of the nanocomposite substrates, indicated by a very low coercive field, a saturation magnetization strictly proportional to the FeHA content and a strong history dependence in temperature sweeps. Regarding the biological performances, confocal laser scanning microscopy and AlamarBlue assay have provided qualitative and quantitative information on human mesenchymal stem cell adhesion and viability/proliferation, respectively, whereas the obtained ALP/DNA values have shown the ability of the nanocomposite substrates to support osteogenic differentiation.</description><subject>Bone and Bones - cytology</subject><subject>Bone and Bones - metabolism</subject><subject>Bone Tissue Regeneration</subject><subject>Cell Adhesion</subject><subject>Cell Survival</subject><subject>Cells, Cultured</subject><subject>Durapatite - chemistry</subject><subject>Humans</subject><subject>Iron - chemistry</subject><subject>Magnetic Hydroxyapatite</subject><subject>Magnetics</subject><subject>Materials Testing - methods</subject><subject>Mesenchymal Stromal Cells - cytology</subject><subject>Mesenchymal Stromal Cells - metabolism</subject><subject>Nanocomposite</subject><subject>Nanocomposites - chemistry</subject><subject>poly(ε-caprolactone)</subject><subject>Polyesters - chemistry</subject><subject>Scaffold</subject><subject>Tissue Engineering - methods</subject><issn>1742-5689</issn><issn>1742-5662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kc9u1DAQxi0EoqVw5YhyLIds7Th2kgsSXfF_ERIqHLhYE2eydcnawXZWzYPxGjwTjras4IBkyR75m998mo-Qp4yuGG3qCx9MvyooK1a05vweOWVVWeRCyuL-8V03J-RRCDeU8ooL8ZCcFJxTXrD6lOw_wtZiNDob3TCf__qZaxi9G0BHZ_H5hfHO5p0bscuu58672xlGiCZiZsE67XajC0sVpjZEDxFD1jufQbcHq1NTmyhZNCFMmKHdGovojd0-Jg96GAI-ubvPyJfXr67Wb_PNpzfv1i83uRZUxByoFqibRoKQArGogJXQQNXXDQgmGbKOU9HWmkrAspdFW9K24RSYrKq2A35GXhy449TusNNok8lBjd7swM_KgVH__lhzrbZur3gaWHGeAOd3AO9-TBii2pmgcRjAopuCSibSqYVkSbo6SLV3IXjsj2MYVUtYaglLLWGpJazU8Oxvc0f5n3SSgB8E3s1pS04bjLO6cZO3qfw_Nj90mRDx9kgF_13JildCfa1LtX7_-Wr9YXOpvvHfNbC2aA</recordid><startdate>20130306</startdate><enddate>20130306</enddate><creator>Gloria, A.</creator><creator>Russo, T.</creator><creator>D'Amora, U.</creator><creator>Zeppetelli, S.</creator><creator>D'Alessandro, T.</creator><creator>Sandri, M.</creator><creator>Bañobre-López, M.</creator><creator>Piñeiro-Redondo, Y.</creator><creator>Uhlarz, M.</creator><creator>Tampieri, A.</creator><creator>Rivas, J.</creator><creator>Herrmannsdörfer, T.</creator><creator>Dediu, V. A.</creator><creator>Ambrosio, L.</creator><creator>De Santis, R.</creator><general>The Royal Society</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>5PM</scope></search><sort><creationdate>20130306</creationdate><title>Magnetic poly(ε-caprolactone)/iron-doped hydroxyapatite nanocomposite substrates for advanced bone tissue engineering</title><author>Gloria, A. ; Russo, T. ; D'Amora, U. ; Zeppetelli, S. ; D'Alessandro, T. ; Sandri, M. ; Bañobre-López, M. ; Piñeiro-Redondo, Y. ; Uhlarz, M. ; Tampieri, A. ; Rivas, J. ; Herrmannsdörfer, T. ; Dediu, V. A. ; Ambrosio, L. ; De Santis, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c505t-a0c5ec996a565ee27a14a9a7f89a5161e1d305b8c06ae4f62b40b930a1677bda3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Bone and Bones - cytology</topic><topic>Bone and Bones - metabolism</topic><topic>Bone Tissue Regeneration</topic><topic>Cell Adhesion</topic><topic>Cell Survival</topic><topic>Cells, Cultured</topic><topic>Durapatite - chemistry</topic><topic>Humans</topic><topic>Iron - chemistry</topic><topic>Magnetic Hydroxyapatite</topic><topic>Magnetics</topic><topic>Materials Testing - methods</topic><topic>Mesenchymal Stromal Cells - cytology</topic><topic>Mesenchymal Stromal Cells - metabolism</topic><topic>Nanocomposite</topic><topic>Nanocomposites - chemistry</topic><topic>poly(ε-caprolactone)</topic><topic>Polyesters - chemistry</topic><topic>Scaffold</topic><topic>Tissue Engineering - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gloria, A.</creatorcontrib><creatorcontrib>Russo, T.</creatorcontrib><creatorcontrib>D'Amora, U.</creatorcontrib><creatorcontrib>Zeppetelli, S.</creatorcontrib><creatorcontrib>D'Alessandro, T.</creatorcontrib><creatorcontrib>Sandri, M.</creatorcontrib><creatorcontrib>Bañobre-López, M.</creatorcontrib><creatorcontrib>Piñeiro-Redondo, Y.</creatorcontrib><creatorcontrib>Uhlarz, M.</creatorcontrib><creatorcontrib>Tampieri, A.</creatorcontrib><creatorcontrib>Rivas, J.</creatorcontrib><creatorcontrib>Herrmannsdörfer, T.</creatorcontrib><creatorcontrib>Dediu, V. A.</creatorcontrib><creatorcontrib>Ambrosio, L.</creatorcontrib><creatorcontrib>De Santis, R.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of the Royal Society interface</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gloria, A.</au><au>Russo, T.</au><au>D'Amora, U.</au><au>Zeppetelli, S.</au><au>D'Alessandro, T.</au><au>Sandri, M.</au><au>Bañobre-López, M.</au><au>Piñeiro-Redondo, Y.</au><au>Uhlarz, M.</au><au>Tampieri, A.</au><au>Rivas, J.</au><au>Herrmannsdörfer, T.</au><au>Dediu, V. A.</au><au>Ambrosio, L.</au><au>De Santis, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magnetic poly(ε-caprolactone)/iron-doped hydroxyapatite nanocomposite substrates for advanced bone tissue engineering</atitle><jtitle>Journal of the Royal Society interface</jtitle><stitle>J. R. Soc. Interface</stitle><addtitle>J. R. Soc. Interface</addtitle><date>2013-03-06</date><risdate>2013</risdate><volume>10</volume><issue>80</issue><spage>20120833</spage><epage>20120833</epage><pages>20120833-20120833</pages><issn>1742-5689</issn><eissn>1742-5662</eissn><abstract>In biomedicine, magnetic nanoparticles provide some attractive possibilities because they possess peculiar physical properties that permit their use in a wide range of applications. The concept of magnetic guidance basically spans from drug delivery and hyperthermia treatment of tumours, to tissue engineering, such as magneto-mechanical stimulation/activation of cell constructs and mechanosensitive ion channels, magnetic cell-seeding procedures, and controlled cell proliferation and differentiation. Accordingly, the aim of this study was to develop fully biodegradable and magnetic nanocomposite substrates for bone tissue engineering by embedding iron-doped hydroxyapatite (FeHA) nanoparticles in a poly(ε-caprolactone) (PCL) matrix. X-ray diffraction analyses enabled the demonstration that the phase composition and crystallinity of the magnetic FeHA were not affected by the process used to develop the nanocomposite substrates. The mechanical characterization performed through small punch tests has evidenced that inclusion of 10 per cent by weight of FeHA would represent an effective reinforcement. The inclusion of nanoparticles also improves the hydrophilicity of the substrates as evidenced by the lower values of water contact angle in comparison with those of neat PCL. The results from magnetic measurements confirmed the superparamagnetic character of the nanocomposite substrates, indicated by a very low coercive field, a saturation magnetization strictly proportional to the FeHA content and a strong history dependence in temperature sweeps. Regarding the biological performances, confocal laser scanning microscopy and AlamarBlue assay have provided qualitative and quantitative information on human mesenchymal stem cell adhesion and viability/proliferation, respectively, whereas the obtained ALP/DNA values have shown the ability of the nanocomposite substrates to support osteogenic differentiation.</abstract><cop>England</cop><pub>The Royal Society</pub><pmid>23303218</pmid><doi>10.1098/rsif.2012.0833</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1742-5689
ispartof Journal of the Royal Society interface, 2013-03, Vol.10 (80), p.20120833-20120833
issn 1742-5689
1742-5662
language eng
recordid cdi_proquest_miscellaneous_1611618561
source MEDLINE; PubMed Central
subjects Bone and Bones - cytology
Bone and Bones - metabolism
Bone Tissue Regeneration
Cell Adhesion
Cell Survival
Cells, Cultured
Durapatite - chemistry
Humans
Iron - chemistry
Magnetic Hydroxyapatite
Magnetics
Materials Testing - methods
Mesenchymal Stromal Cells - cytology
Mesenchymal Stromal Cells - metabolism
Nanocomposite
Nanocomposites - chemistry
poly(ε-caprolactone)
Polyesters - chemistry
Scaffold
Tissue Engineering - methods
title Magnetic poly(ε-caprolactone)/iron-doped hydroxyapatite nanocomposite substrates for advanced bone tissue engineering
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T20%3A35%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magnetic%20poly(%CE%B5-caprolactone)/iron-doped%20hydroxyapatite%20nanocomposite%20substrates%20for%20advanced%20bone%20tissue%20engineering&rft.jtitle=Journal%20of%20the%20Royal%20Society%20interface&rft.au=Gloria,%20A.&rft.date=2013-03-06&rft.volume=10&rft.issue=80&rft.spage=20120833&rft.epage=20120833&rft.pages=20120833-20120833&rft.issn=1742-5689&rft.eissn=1742-5662&rft_id=info:doi/10.1098/rsif.2012.0833&rft_dat=%3Cproquest_pubme%3E1611618561%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1611618561&rft_id=info:pmid/23303218&rfr_iscdi=true