Magnetic poly(ε-caprolactone)/iron-doped hydroxyapatite nanocomposite substrates for advanced bone tissue engineering
In biomedicine, magnetic nanoparticles provide some attractive possibilities because they possess peculiar physical properties that permit their use in a wide range of applications. The concept of magnetic guidance basically spans from drug delivery and hyperthermia treatment of tumours, to tissue e...
Gespeichert in:
Veröffentlicht in: | Journal of the Royal Society interface 2013-03, Vol.10 (80), p.20120833-20120833 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 20120833 |
---|---|
container_issue | 80 |
container_start_page | 20120833 |
container_title | Journal of the Royal Society interface |
container_volume | 10 |
creator | Gloria, A. Russo, T. D'Amora, U. Zeppetelli, S. D'Alessandro, T. Sandri, M. Bañobre-López, M. Piñeiro-Redondo, Y. Uhlarz, M. Tampieri, A. Rivas, J. Herrmannsdörfer, T. Dediu, V. A. Ambrosio, L. De Santis, R. |
description | In biomedicine, magnetic nanoparticles provide some attractive possibilities because they possess peculiar physical properties that permit their use in a wide range of applications. The concept of magnetic guidance basically spans from drug delivery and hyperthermia treatment of tumours, to tissue engineering, such as magneto-mechanical stimulation/activation of cell constructs and mechanosensitive ion channels, magnetic cell-seeding procedures, and controlled cell proliferation and differentiation. Accordingly, the aim of this study was to develop fully biodegradable and magnetic nanocomposite substrates for bone tissue engineering by embedding iron-doped hydroxyapatite (FeHA) nanoparticles in a poly(ε-caprolactone) (PCL) matrix. X-ray diffraction analyses enabled the demonstration that the phase composition and crystallinity of the magnetic FeHA were not affected by the process used to develop the nanocomposite substrates. The mechanical characterization performed through small punch tests has evidenced that inclusion of 10 per cent by weight of FeHA would represent an effective reinforcement. The inclusion of nanoparticles also improves the hydrophilicity of the substrates as evidenced by the lower values of water contact angle in comparison with those of neat PCL. The results from magnetic measurements confirmed the superparamagnetic character of the nanocomposite substrates, indicated by a very low coercive field, a saturation magnetization strictly proportional to the FeHA content and a strong history dependence in temperature sweeps. Regarding the biological performances, confocal laser scanning microscopy and AlamarBlue assay have provided qualitative and quantitative information on human mesenchymal stem cell adhesion and viability/proliferation, respectively, whereas the obtained ALP/DNA values have shown the ability of the nanocomposite substrates to support osteogenic differentiation. |
doi_str_mv | 10.1098/rsif.2012.0833 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1611618561</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1611618561</sourcerecordid><originalsourceid>FETCH-LOGICAL-c505t-a0c5ec996a565ee27a14a9a7f89a5161e1d305b8c06ae4f62b40b930a1677bda3</originalsourceid><addsrcrecordid>eNp1kc9u1DAQxi0EoqVw5YhyLIds7Th2kgsSXfF_ERIqHLhYE2eydcnawXZWzYPxGjwTjras4IBkyR75m998mo-Qp4yuGG3qCx9MvyooK1a05vweOWVVWeRCyuL-8V03J-RRCDeU8ooL8ZCcFJxTXrD6lOw_wtZiNDob3TCf__qZaxi9G0BHZ_H5hfHO5p0bscuu58672xlGiCZiZsE67XajC0sVpjZEDxFD1jufQbcHq1NTmyhZNCFMmKHdGovojd0-Jg96GAI-ubvPyJfXr67Wb_PNpzfv1i83uRZUxByoFqibRoKQArGogJXQQNXXDQgmGbKOU9HWmkrAspdFW9K24RSYrKq2A35GXhy449TusNNok8lBjd7swM_KgVH__lhzrbZur3gaWHGeAOd3AO9-TBii2pmgcRjAopuCSibSqYVkSbo6SLV3IXjsj2MYVUtYaglLLWGpJazU8Oxvc0f5n3SSgB8E3s1pS04bjLO6cZO3qfw_Nj90mRDx9kgF_13JildCfa1LtX7_-Wr9YXOpvvHfNbC2aA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1611618561</pqid></control><display><type>article</type><title>Magnetic poly(ε-caprolactone)/iron-doped hydroxyapatite nanocomposite substrates for advanced bone tissue engineering</title><source>MEDLINE</source><source>PubMed Central</source><creator>Gloria, A. ; Russo, T. ; D'Amora, U. ; Zeppetelli, S. ; D'Alessandro, T. ; Sandri, M. ; Bañobre-López, M. ; Piñeiro-Redondo, Y. ; Uhlarz, M. ; Tampieri, A. ; Rivas, J. ; Herrmannsdörfer, T. ; Dediu, V. A. ; Ambrosio, L. ; De Santis, R.</creator><creatorcontrib>Gloria, A. ; Russo, T. ; D'Amora, U. ; Zeppetelli, S. ; D'Alessandro, T. ; Sandri, M. ; Bañobre-López, M. ; Piñeiro-Redondo, Y. ; Uhlarz, M. ; Tampieri, A. ; Rivas, J. ; Herrmannsdörfer, T. ; Dediu, V. A. ; Ambrosio, L. ; De Santis, R.</creatorcontrib><description>In biomedicine, magnetic nanoparticles provide some attractive possibilities because they possess peculiar physical properties that permit their use in a wide range of applications. The concept of magnetic guidance basically spans from drug delivery and hyperthermia treatment of tumours, to tissue engineering, such as magneto-mechanical stimulation/activation of cell constructs and mechanosensitive ion channels, magnetic cell-seeding procedures, and controlled cell proliferation and differentiation. Accordingly, the aim of this study was to develop fully biodegradable and magnetic nanocomposite substrates for bone tissue engineering by embedding iron-doped hydroxyapatite (FeHA) nanoparticles in a poly(ε-caprolactone) (PCL) matrix. X-ray diffraction analyses enabled the demonstration that the phase composition and crystallinity of the magnetic FeHA were not affected by the process used to develop the nanocomposite substrates. The mechanical characterization performed through small punch tests has evidenced that inclusion of 10 per cent by weight of FeHA would represent an effective reinforcement. The inclusion of nanoparticles also improves the hydrophilicity of the substrates as evidenced by the lower values of water contact angle in comparison with those of neat PCL. The results from magnetic measurements confirmed the superparamagnetic character of the nanocomposite substrates, indicated by a very low coercive field, a saturation magnetization strictly proportional to the FeHA content and a strong history dependence in temperature sweeps. Regarding the biological performances, confocal laser scanning microscopy and AlamarBlue assay have provided qualitative and quantitative information on human mesenchymal stem cell adhesion and viability/proliferation, respectively, whereas the obtained ALP/DNA values have shown the ability of the nanocomposite substrates to support osteogenic differentiation.</description><identifier>ISSN: 1742-5689</identifier><identifier>EISSN: 1742-5662</identifier><identifier>DOI: 10.1098/rsif.2012.0833</identifier><identifier>PMID: 23303218</identifier><language>eng</language><publisher>England: The Royal Society</publisher><subject>Bone and Bones - cytology ; Bone and Bones - metabolism ; Bone Tissue Regeneration ; Cell Adhesion ; Cell Survival ; Cells, Cultured ; Durapatite - chemistry ; Humans ; Iron - chemistry ; Magnetic Hydroxyapatite ; Magnetics ; Materials Testing - methods ; Mesenchymal Stromal Cells - cytology ; Mesenchymal Stromal Cells - metabolism ; Nanocomposite ; Nanocomposites - chemistry ; poly(ε-caprolactone) ; Polyesters - chemistry ; Scaffold ; Tissue Engineering - methods</subject><ispartof>Journal of the Royal Society interface, 2013-03, Vol.10 (80), p.20120833-20120833</ispartof><rights>2013 The Author(s) Published by the Royal Society. All rights reserved.</rights><rights>2013 The Author(s) Published by the Royal Society. All rights reserved. 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c505t-a0c5ec996a565ee27a14a9a7f89a5161e1d305b8c06ae4f62b40b930a1677bda3</citedby><cites>FETCH-LOGICAL-c505t-a0c5ec996a565ee27a14a9a7f89a5161e1d305b8c06ae4f62b40b930a1677bda3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3565733/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3565733/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23303218$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gloria, A.</creatorcontrib><creatorcontrib>Russo, T.</creatorcontrib><creatorcontrib>D'Amora, U.</creatorcontrib><creatorcontrib>Zeppetelli, S.</creatorcontrib><creatorcontrib>D'Alessandro, T.</creatorcontrib><creatorcontrib>Sandri, M.</creatorcontrib><creatorcontrib>Bañobre-López, M.</creatorcontrib><creatorcontrib>Piñeiro-Redondo, Y.</creatorcontrib><creatorcontrib>Uhlarz, M.</creatorcontrib><creatorcontrib>Tampieri, A.</creatorcontrib><creatorcontrib>Rivas, J.</creatorcontrib><creatorcontrib>Herrmannsdörfer, T.</creatorcontrib><creatorcontrib>Dediu, V. A.</creatorcontrib><creatorcontrib>Ambrosio, L.</creatorcontrib><creatorcontrib>De Santis, R.</creatorcontrib><title>Magnetic poly(ε-caprolactone)/iron-doped hydroxyapatite nanocomposite substrates for advanced bone tissue engineering</title><title>Journal of the Royal Society interface</title><addtitle>J. R. Soc. Interface</addtitle><addtitle>J. R. Soc. Interface</addtitle><description>In biomedicine, magnetic nanoparticles provide some attractive possibilities because they possess peculiar physical properties that permit their use in a wide range of applications. The concept of magnetic guidance basically spans from drug delivery and hyperthermia treatment of tumours, to tissue engineering, such as magneto-mechanical stimulation/activation of cell constructs and mechanosensitive ion channels, magnetic cell-seeding procedures, and controlled cell proliferation and differentiation. Accordingly, the aim of this study was to develop fully biodegradable and magnetic nanocomposite substrates for bone tissue engineering by embedding iron-doped hydroxyapatite (FeHA) nanoparticles in a poly(ε-caprolactone) (PCL) matrix. X-ray diffraction analyses enabled the demonstration that the phase composition and crystallinity of the magnetic FeHA were not affected by the process used to develop the nanocomposite substrates. The mechanical characterization performed through small punch tests has evidenced that inclusion of 10 per cent by weight of FeHA would represent an effective reinforcement. The inclusion of nanoparticles also improves the hydrophilicity of the substrates as evidenced by the lower values of water contact angle in comparison with those of neat PCL. The results from magnetic measurements confirmed the superparamagnetic character of the nanocomposite substrates, indicated by a very low coercive field, a saturation magnetization strictly proportional to the FeHA content and a strong history dependence in temperature sweeps. Regarding the biological performances, confocal laser scanning microscopy and AlamarBlue assay have provided qualitative and quantitative information on human mesenchymal stem cell adhesion and viability/proliferation, respectively, whereas the obtained ALP/DNA values have shown the ability of the nanocomposite substrates to support osteogenic differentiation.</description><subject>Bone and Bones - cytology</subject><subject>Bone and Bones - metabolism</subject><subject>Bone Tissue Regeneration</subject><subject>Cell Adhesion</subject><subject>Cell Survival</subject><subject>Cells, Cultured</subject><subject>Durapatite - chemistry</subject><subject>Humans</subject><subject>Iron - chemistry</subject><subject>Magnetic Hydroxyapatite</subject><subject>Magnetics</subject><subject>Materials Testing - methods</subject><subject>Mesenchymal Stromal Cells - cytology</subject><subject>Mesenchymal Stromal Cells - metabolism</subject><subject>Nanocomposite</subject><subject>Nanocomposites - chemistry</subject><subject>poly(ε-caprolactone)</subject><subject>Polyesters - chemistry</subject><subject>Scaffold</subject><subject>Tissue Engineering - methods</subject><issn>1742-5689</issn><issn>1742-5662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kc9u1DAQxi0EoqVw5YhyLIds7Th2kgsSXfF_ERIqHLhYE2eydcnawXZWzYPxGjwTjras4IBkyR75m998mo-Qp4yuGG3qCx9MvyooK1a05vweOWVVWeRCyuL-8V03J-RRCDeU8ooL8ZCcFJxTXrD6lOw_wtZiNDob3TCf__qZaxi9G0BHZ_H5hfHO5p0bscuu58672xlGiCZiZsE67XajC0sVpjZEDxFD1jufQbcHq1NTmyhZNCFMmKHdGovojd0-Jg96GAI-ubvPyJfXr67Wb_PNpzfv1i83uRZUxByoFqibRoKQArGogJXQQNXXDQgmGbKOU9HWmkrAspdFW9K24RSYrKq2A35GXhy449TusNNok8lBjd7swM_KgVH__lhzrbZur3gaWHGeAOd3AO9-TBii2pmgcRjAopuCSibSqYVkSbo6SLV3IXjsj2MYVUtYaglLLWGpJazU8Oxvc0f5n3SSgB8E3s1pS04bjLO6cZO3qfw_Nj90mRDx9kgF_13JildCfa1LtX7_-Wr9YXOpvvHfNbC2aA</recordid><startdate>20130306</startdate><enddate>20130306</enddate><creator>Gloria, A.</creator><creator>Russo, T.</creator><creator>D'Amora, U.</creator><creator>Zeppetelli, S.</creator><creator>D'Alessandro, T.</creator><creator>Sandri, M.</creator><creator>Bañobre-López, M.</creator><creator>Piñeiro-Redondo, Y.</creator><creator>Uhlarz, M.</creator><creator>Tampieri, A.</creator><creator>Rivas, J.</creator><creator>Herrmannsdörfer, T.</creator><creator>Dediu, V. A.</creator><creator>Ambrosio, L.</creator><creator>De Santis, R.</creator><general>The Royal Society</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>5PM</scope></search><sort><creationdate>20130306</creationdate><title>Magnetic poly(ε-caprolactone)/iron-doped hydroxyapatite nanocomposite substrates for advanced bone tissue engineering</title><author>Gloria, A. ; Russo, T. ; D'Amora, U. ; Zeppetelli, S. ; D'Alessandro, T. ; Sandri, M. ; Bañobre-López, M. ; Piñeiro-Redondo, Y. ; Uhlarz, M. ; Tampieri, A. ; Rivas, J. ; Herrmannsdörfer, T. ; Dediu, V. A. ; Ambrosio, L. ; De Santis, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c505t-a0c5ec996a565ee27a14a9a7f89a5161e1d305b8c06ae4f62b40b930a1677bda3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Bone and Bones - cytology</topic><topic>Bone and Bones - metabolism</topic><topic>Bone Tissue Regeneration</topic><topic>Cell Adhesion</topic><topic>Cell Survival</topic><topic>Cells, Cultured</topic><topic>Durapatite - chemistry</topic><topic>Humans</topic><topic>Iron - chemistry</topic><topic>Magnetic Hydroxyapatite</topic><topic>Magnetics</topic><topic>Materials Testing - methods</topic><topic>Mesenchymal Stromal Cells - cytology</topic><topic>Mesenchymal Stromal Cells - metabolism</topic><topic>Nanocomposite</topic><topic>Nanocomposites - chemistry</topic><topic>poly(ε-caprolactone)</topic><topic>Polyesters - chemistry</topic><topic>Scaffold</topic><topic>Tissue Engineering - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gloria, A.</creatorcontrib><creatorcontrib>Russo, T.</creatorcontrib><creatorcontrib>D'Amora, U.</creatorcontrib><creatorcontrib>Zeppetelli, S.</creatorcontrib><creatorcontrib>D'Alessandro, T.</creatorcontrib><creatorcontrib>Sandri, M.</creatorcontrib><creatorcontrib>Bañobre-López, M.</creatorcontrib><creatorcontrib>Piñeiro-Redondo, Y.</creatorcontrib><creatorcontrib>Uhlarz, M.</creatorcontrib><creatorcontrib>Tampieri, A.</creatorcontrib><creatorcontrib>Rivas, J.</creatorcontrib><creatorcontrib>Herrmannsdörfer, T.</creatorcontrib><creatorcontrib>Dediu, V. A.</creatorcontrib><creatorcontrib>Ambrosio, L.</creatorcontrib><creatorcontrib>De Santis, R.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of the Royal Society interface</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gloria, A.</au><au>Russo, T.</au><au>D'Amora, U.</au><au>Zeppetelli, S.</au><au>D'Alessandro, T.</au><au>Sandri, M.</au><au>Bañobre-López, M.</au><au>Piñeiro-Redondo, Y.</au><au>Uhlarz, M.</au><au>Tampieri, A.</au><au>Rivas, J.</au><au>Herrmannsdörfer, T.</au><au>Dediu, V. A.</au><au>Ambrosio, L.</au><au>De Santis, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magnetic poly(ε-caprolactone)/iron-doped hydroxyapatite nanocomposite substrates for advanced bone tissue engineering</atitle><jtitle>Journal of the Royal Society interface</jtitle><stitle>J. R. Soc. Interface</stitle><addtitle>J. R. Soc. Interface</addtitle><date>2013-03-06</date><risdate>2013</risdate><volume>10</volume><issue>80</issue><spage>20120833</spage><epage>20120833</epage><pages>20120833-20120833</pages><issn>1742-5689</issn><eissn>1742-5662</eissn><abstract>In biomedicine, magnetic nanoparticles provide some attractive possibilities because they possess peculiar physical properties that permit their use in a wide range of applications. The concept of magnetic guidance basically spans from drug delivery and hyperthermia treatment of tumours, to tissue engineering, such as magneto-mechanical stimulation/activation of cell constructs and mechanosensitive ion channels, magnetic cell-seeding procedures, and controlled cell proliferation and differentiation. Accordingly, the aim of this study was to develop fully biodegradable and magnetic nanocomposite substrates for bone tissue engineering by embedding iron-doped hydroxyapatite (FeHA) nanoparticles in a poly(ε-caprolactone) (PCL) matrix. X-ray diffraction analyses enabled the demonstration that the phase composition and crystallinity of the magnetic FeHA were not affected by the process used to develop the nanocomposite substrates. The mechanical characterization performed through small punch tests has evidenced that inclusion of 10 per cent by weight of FeHA would represent an effective reinforcement. The inclusion of nanoparticles also improves the hydrophilicity of the substrates as evidenced by the lower values of water contact angle in comparison with those of neat PCL. The results from magnetic measurements confirmed the superparamagnetic character of the nanocomposite substrates, indicated by a very low coercive field, a saturation magnetization strictly proportional to the FeHA content and a strong history dependence in temperature sweeps. Regarding the biological performances, confocal laser scanning microscopy and AlamarBlue assay have provided qualitative and quantitative information on human mesenchymal stem cell adhesion and viability/proliferation, respectively, whereas the obtained ALP/DNA values have shown the ability of the nanocomposite substrates to support osteogenic differentiation.</abstract><cop>England</cop><pub>The Royal Society</pub><pmid>23303218</pmid><doi>10.1098/rsif.2012.0833</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1742-5689 |
ispartof | Journal of the Royal Society interface, 2013-03, Vol.10 (80), p.20120833-20120833 |
issn | 1742-5689 1742-5662 |
language | eng |
recordid | cdi_proquest_miscellaneous_1611618561 |
source | MEDLINE; PubMed Central |
subjects | Bone and Bones - cytology Bone and Bones - metabolism Bone Tissue Regeneration Cell Adhesion Cell Survival Cells, Cultured Durapatite - chemistry Humans Iron - chemistry Magnetic Hydroxyapatite Magnetics Materials Testing - methods Mesenchymal Stromal Cells - cytology Mesenchymal Stromal Cells - metabolism Nanocomposite Nanocomposites - chemistry poly(ε-caprolactone) Polyesters - chemistry Scaffold Tissue Engineering - methods |
title | Magnetic poly(ε-caprolactone)/iron-doped hydroxyapatite nanocomposite substrates for advanced bone tissue engineering |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T20%3A35%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magnetic%20poly(%CE%B5-caprolactone)/iron-doped%20hydroxyapatite%20nanocomposite%20substrates%20for%20advanced%20bone%20tissue%20engineering&rft.jtitle=Journal%20of%20the%20Royal%20Society%20interface&rft.au=Gloria,%20A.&rft.date=2013-03-06&rft.volume=10&rft.issue=80&rft.spage=20120833&rft.epage=20120833&rft.pages=20120833-20120833&rft.issn=1742-5689&rft.eissn=1742-5662&rft_id=info:doi/10.1098/rsif.2012.0833&rft_dat=%3Cproquest_pubme%3E1611618561%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1611618561&rft_id=info:pmid/23303218&rfr_iscdi=true |