Model-Based Tolerance Intervals Derived from Cumulative Historical Composition Data: Application for Substantial Equivalence Assessment of a Genetically Modified Crop

Compositional analysis is a requisite component of the substantial equivalence framework utilized to assess genetically modified (GM) crop safety. Statistical differences in composition data between GM and non-GM crops require a context in which to determine biological relevance. This context is pro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of agricultural and food chemistry 2014-10, Vol.62 (40), p.9916-9926
Hauptverfasser: Hong, Bonnie, Fisher, Tracey L, Sult, Theresa S, Maxwell, Carl A, Mickelson, James A, Kishino, Hirohisa, Locke, Mary E. H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9926
container_issue 40
container_start_page 9916
container_title Journal of agricultural and food chemistry
container_volume 62
creator Hong, Bonnie
Fisher, Tracey L
Sult, Theresa S
Maxwell, Carl A
Mickelson, James A
Kishino, Hirohisa
Locke, Mary E. H
description Compositional analysis is a requisite component of the substantial equivalence framework utilized to assess genetically modified (GM) crop safety. Statistical differences in composition data between GM and non-GM crops require a context in which to determine biological relevance. This context is provided by surveying the natural variation of key nutrient and antinutrient levels within the crop population with a history of safe use. Data accumulated from various genotypes with a history of safe use cultivated in relevant commercial crop-growing environments over multiple seasons are discussed as the appropriate data representative of this natural variation. A model-based parametric tolerance interval approach, which accounts for the correlated and unbalanced data structure of cumulative historical data collected from multisite field studies conducted over multiple seasons, is presented. This paper promotes the application of this tolerance interval approach to generate reference ranges for evaluation of the biological relevance of statistical differences identified during substantial equivalence assessment of a GM crop.
doi_str_mv 10.1021/jf502158q
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1609507676</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1609507676</sourcerecordid><originalsourceid>FETCH-LOGICAL-a416t-3d6acceef534f46bb650195feb5d7203ec3eac2359ce3a573f29c4891c07e95b3</originalsourceid><addsrcrecordid>eNptkc1u2zAQhImiQeKmOfQFCl4KtAelpGjqpzdX-TPgoockZ4GilgANSpS5VIC8UJ4zdJzklNMAsx9mdzGEfOPsnLOc_94amURWu09kwWXOMsl59ZksWHKzShb8hHxB3DLGKlmyY3KSJ6hiolqQp3--B5f9VQg9vfMOgho10PUYITwoh_QCgn1IMxP8QJt5mJ2KyaA3FqMPVitHGz9MHm20fqQXKqo_dDVNLo1eHOMDvZ07jGqMNtGXu9mmZNivWSEC4gBjpN5QRa9hhLjPdI80HWaNTZub4Kev5Mika-DsVU_J_dXlXXOTbf5fr5vVJlNLXsRM9IXSGsBIsTTLousKyXgtDXSyL3MmQAtQOhey1iCULIXJa72saq5ZCbXsxCn5ecidgt_NgLEdLGpwTo3gZ2x5wWrJyqIsEvrrgOrgEQOYdgp2UOGx5azd19K-15LY76-xczdA_06-9ZCAHwdAaWy3fg5j-vKDoGcPO5eN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1609507676</pqid></control><display><type>article</type><title>Model-Based Tolerance Intervals Derived from Cumulative Historical Composition Data: Application for Substantial Equivalence Assessment of a Genetically Modified Crop</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Hong, Bonnie ; Fisher, Tracey L ; Sult, Theresa S ; Maxwell, Carl A ; Mickelson, James A ; Kishino, Hirohisa ; Locke, Mary E. H</creator><creatorcontrib>Hong, Bonnie ; Fisher, Tracey L ; Sult, Theresa S ; Maxwell, Carl A ; Mickelson, James A ; Kishino, Hirohisa ; Locke, Mary E. H</creatorcontrib><description>Compositional analysis is a requisite component of the substantial equivalence framework utilized to assess genetically modified (GM) crop safety. Statistical differences in composition data between GM and non-GM crops require a context in which to determine biological relevance. This context is provided by surveying the natural variation of key nutrient and antinutrient levels within the crop population with a history of safe use. Data accumulated from various genotypes with a history of safe use cultivated in relevant commercial crop-growing environments over multiple seasons are discussed as the appropriate data representative of this natural variation. A model-based parametric tolerance interval approach, which accounts for the correlated and unbalanced data structure of cumulative historical data collected from multisite field studies conducted over multiple seasons, is presented. This paper promotes the application of this tolerance interval approach to generate reference ranges for evaluation of the biological relevance of statistical differences identified during substantial equivalence assessment of a GM crop.</description><identifier>ISSN: 0021-8561</identifier><identifier>EISSN: 1520-5118</identifier><identifier>DOI: 10.1021/jf502158q</identifier><identifier>PMID: 25208038</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Argentina ; Canada ; Chile ; Crops, Agricultural ; Data Interpretation, Statistical ; Food Safety ; Linear Models ; Models, Theoretical ; Plants, Genetically Modified ; Seeds - chemistry ; Seeds - genetics ; Soil ; United States ; Zea mays</subject><ispartof>Journal of agricultural and food chemistry, 2014-10, Vol.62 (40), p.9916-9926</ispartof><rights>Copyright © 2014 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a416t-3d6acceef534f46bb650195feb5d7203ec3eac2359ce3a573f29c4891c07e95b3</citedby><cites>FETCH-LOGICAL-a416t-3d6acceef534f46bb650195feb5d7203ec3eac2359ce3a573f29c4891c07e95b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jf502158q$$EPDF$$P50$$Gacs$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jf502158q$$EHTML$$P50$$Gacs$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,2751,27055,27903,27904,56717,56767</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25208038$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hong, Bonnie</creatorcontrib><creatorcontrib>Fisher, Tracey L</creatorcontrib><creatorcontrib>Sult, Theresa S</creatorcontrib><creatorcontrib>Maxwell, Carl A</creatorcontrib><creatorcontrib>Mickelson, James A</creatorcontrib><creatorcontrib>Kishino, Hirohisa</creatorcontrib><creatorcontrib>Locke, Mary E. H</creatorcontrib><title>Model-Based Tolerance Intervals Derived from Cumulative Historical Composition Data: Application for Substantial Equivalence Assessment of a Genetically Modified Crop</title><title>Journal of agricultural and food chemistry</title><addtitle>J. Agric. Food Chem</addtitle><description>Compositional analysis is a requisite component of the substantial equivalence framework utilized to assess genetically modified (GM) crop safety. Statistical differences in composition data between GM and non-GM crops require a context in which to determine biological relevance. This context is provided by surveying the natural variation of key nutrient and antinutrient levels within the crop population with a history of safe use. Data accumulated from various genotypes with a history of safe use cultivated in relevant commercial crop-growing environments over multiple seasons are discussed as the appropriate data representative of this natural variation. A model-based parametric tolerance interval approach, which accounts for the correlated and unbalanced data structure of cumulative historical data collected from multisite field studies conducted over multiple seasons, is presented. This paper promotes the application of this tolerance interval approach to generate reference ranges for evaluation of the biological relevance of statistical differences identified during substantial equivalence assessment of a GM crop.</description><subject>Argentina</subject><subject>Canada</subject><subject>Chile</subject><subject>Crops, Agricultural</subject><subject>Data Interpretation, Statistical</subject><subject>Food Safety</subject><subject>Linear Models</subject><subject>Models, Theoretical</subject><subject>Plants, Genetically Modified</subject><subject>Seeds - chemistry</subject><subject>Seeds - genetics</subject><subject>Soil</subject><subject>United States</subject><subject>Zea mays</subject><issn>0021-8561</issn><issn>1520-5118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>N~.</sourceid><sourceid>EIF</sourceid><recordid>eNptkc1u2zAQhImiQeKmOfQFCl4KtAelpGjqpzdX-TPgoockZ4GilgANSpS5VIC8UJ4zdJzklNMAsx9mdzGEfOPsnLOc_94amURWu09kwWXOMsl59ZksWHKzShb8hHxB3DLGKlmyY3KSJ6hiolqQp3--B5f9VQg9vfMOgho10PUYITwoh_QCgn1IMxP8QJt5mJ2KyaA3FqMPVitHGz9MHm20fqQXKqo_dDVNLo1eHOMDvZ07jGqMNtGXu9mmZNivWSEC4gBjpN5QRa9hhLjPdI80HWaNTZub4Kev5Mika-DsVU_J_dXlXXOTbf5fr5vVJlNLXsRM9IXSGsBIsTTLousKyXgtDXSyL3MmQAtQOhey1iCULIXJa72saq5ZCbXsxCn5ecidgt_NgLEdLGpwTo3gZ2x5wWrJyqIsEvrrgOrgEQOYdgp2UOGx5azd19K-15LY76-xczdA_06-9ZCAHwdAaWy3fg5j-vKDoGcPO5eN</recordid><startdate>20141008</startdate><enddate>20141008</enddate><creator>Hong, Bonnie</creator><creator>Fisher, Tracey L</creator><creator>Sult, Theresa S</creator><creator>Maxwell, Carl A</creator><creator>Mickelson, James A</creator><creator>Kishino, Hirohisa</creator><creator>Locke, Mary E. H</creator><general>American Chemical Society</general><scope>N~.</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20141008</creationdate><title>Model-Based Tolerance Intervals Derived from Cumulative Historical Composition Data: Application for Substantial Equivalence Assessment of a Genetically Modified Crop</title><author>Hong, Bonnie ; Fisher, Tracey L ; Sult, Theresa S ; Maxwell, Carl A ; Mickelson, James A ; Kishino, Hirohisa ; Locke, Mary E. H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a416t-3d6acceef534f46bb650195feb5d7203ec3eac2359ce3a573f29c4891c07e95b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Argentina</topic><topic>Canada</topic><topic>Chile</topic><topic>Crops, Agricultural</topic><topic>Data Interpretation, Statistical</topic><topic>Food Safety</topic><topic>Linear Models</topic><topic>Models, Theoretical</topic><topic>Plants, Genetically Modified</topic><topic>Seeds - chemistry</topic><topic>Seeds - genetics</topic><topic>Soil</topic><topic>United States</topic><topic>Zea mays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hong, Bonnie</creatorcontrib><creatorcontrib>Fisher, Tracey L</creatorcontrib><creatorcontrib>Sult, Theresa S</creatorcontrib><creatorcontrib>Maxwell, Carl A</creatorcontrib><creatorcontrib>Mickelson, James A</creatorcontrib><creatorcontrib>Kishino, Hirohisa</creatorcontrib><creatorcontrib>Locke, Mary E. H</creatorcontrib><collection>American Chemical Society (ACS) Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of agricultural and food chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hong, Bonnie</au><au>Fisher, Tracey L</au><au>Sult, Theresa S</au><au>Maxwell, Carl A</au><au>Mickelson, James A</au><au>Kishino, Hirohisa</au><au>Locke, Mary E. H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Model-Based Tolerance Intervals Derived from Cumulative Historical Composition Data: Application for Substantial Equivalence Assessment of a Genetically Modified Crop</atitle><jtitle>Journal of agricultural and food chemistry</jtitle><addtitle>J. Agric. Food Chem</addtitle><date>2014-10-08</date><risdate>2014</risdate><volume>62</volume><issue>40</issue><spage>9916</spage><epage>9926</epage><pages>9916-9926</pages><issn>0021-8561</issn><eissn>1520-5118</eissn><abstract>Compositional analysis is a requisite component of the substantial equivalence framework utilized to assess genetically modified (GM) crop safety. Statistical differences in composition data between GM and non-GM crops require a context in which to determine biological relevance. This context is provided by surveying the natural variation of key nutrient and antinutrient levels within the crop population with a history of safe use. Data accumulated from various genotypes with a history of safe use cultivated in relevant commercial crop-growing environments over multiple seasons are discussed as the appropriate data representative of this natural variation. A model-based parametric tolerance interval approach, which accounts for the correlated and unbalanced data structure of cumulative historical data collected from multisite field studies conducted over multiple seasons, is presented. This paper promotes the application of this tolerance interval approach to generate reference ranges for evaluation of the biological relevance of statistical differences identified during substantial equivalence assessment of a GM crop.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>25208038</pmid><doi>10.1021/jf502158q</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-8561
ispartof Journal of agricultural and food chemistry, 2014-10, Vol.62 (40), p.9916-9926
issn 0021-8561
1520-5118
language eng
recordid cdi_proquest_miscellaneous_1609507676
source MEDLINE; American Chemical Society Journals
subjects Argentina
Canada
Chile
Crops, Agricultural
Data Interpretation, Statistical
Food Safety
Linear Models
Models, Theoretical
Plants, Genetically Modified
Seeds - chemistry
Seeds - genetics
Soil
United States
Zea mays
title Model-Based Tolerance Intervals Derived from Cumulative Historical Composition Data: Application for Substantial Equivalence Assessment of a Genetically Modified Crop
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T04%3A30%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Model-Based%20Tolerance%20Intervals%20Derived%20from%20Cumulative%20Historical%20Composition%20Data:%20Application%20for%20Substantial%20Equivalence%20Assessment%20of%20a%20Genetically%20Modified%20Crop&rft.jtitle=Journal%20of%20agricultural%20and%20food%20chemistry&rft.au=Hong,%20Bonnie&rft.date=2014-10-08&rft.volume=62&rft.issue=40&rft.spage=9916&rft.epage=9926&rft.pages=9916-9926&rft.issn=0021-8561&rft.eissn=1520-5118&rft_id=info:doi/10.1021/jf502158q&rft_dat=%3Cproquest_cross%3E1609507676%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1609507676&rft_id=info:pmid/25208038&rfr_iscdi=true