Temsirolimus combined with cisplatin or bevacizumab is active in osteosarcoma models

Mammalian target of rapamycin (mTOR) is a new promising oncological target. However, most clinical studies reported only modest antitumor activity during mTOR‐targeted monotherapies, including studies in osteosarcomas, emphasizing a need for improvement. We hypothesized that the combination with rat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of cancer 2014-12, Vol.135 (12), p.2770-2782
Hauptverfasser: Fleuren, Emmy D.G., Versleijen‐Jonkers, Yvonne M.H., Roeffen, Melissa H.S., Franssen, Gerben M., Flucke, Uta E., Houghton, Peter J., Oyen, Wim J.G., Boerman, Otto C., Graaf, Winette T.A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2782
container_issue 12
container_start_page 2770
container_title International journal of cancer
container_volume 135
creator Fleuren, Emmy D.G.
Versleijen‐Jonkers, Yvonne M.H.
Roeffen, Melissa H.S.
Franssen, Gerben M.
Flucke, Uta E.
Houghton, Peter J.
Oyen, Wim J.G.
Boerman, Otto C.
Graaf, Winette T.A.
description Mammalian target of rapamycin (mTOR) is a new promising oncological target. However, most clinical studies reported only modest antitumor activity during mTOR‐targeted monotherapies, including studies in osteosarcomas, emphasizing a need for improvement. We hypothesized that the combination with rationally selected other therapeutic agents may improve response. In this study, we examined the efficacy of the mTOR inhibitor temsirolimus combined with cisplatin or bevacizumab on the growth of human osteosarcoma xenografts (OS‐33 and OS‐1) in vivo, incorporating functional imaging techniques and microscopic analyses to unravel mechanisms of response. In both OS‐33 and OS‐1 models, the activity of temsirolimus was significantly enhanced by the addition of cisplatin (TC) or bevacizumab (TB). Extensive immunohistochemical analysis demonstrated apparent effects on tumor architecture, vasculature, apoptosis and the mTOR‐pathway with combined treatments. 3′‐Deoxy‐3′‐18F‐fluorothymidine (18F‐FLT) positron emission tomography (PET) scans showed a remarkable decrease in 18F‐FLT signal in TC‐ and TB‐treated OS‐1 tumors, which was already noticeable after 1 week of treatment. No baseline uptake was observed in the OS‐33 model. Both immunohistochemistry and 18F‐FLT‐PET demonstrated that responses as determined by caliper measurements underestimated the actual tumor response. Although 18F‐FLT‐PET could be used for accurate and early response monitoring for temsirolimus‐based therapies in the OS‐1 model, we could not evaluate OS‐33 tumors with this molecular imaging technique. Further research on the value of the use of 18F‐FLT‐PET in this setting in osteosarcomas is warranted. Overall, these findings urge the further exploration of TC and TB treatment for osteosarcoma (and other cancer) patients. What's new? Blockade of mammalian target of rapamycin (mTOR) represents a promising approach in the treatment of osteosarcoma, although mTOR monotherapy has met with mixed results in patients. This study suggests that combination therapy may be the key to success. Using in vivo osteosarcoma models, the authors show that the activity of the mTOR‐inhibitor temsirolimus is significantly enhanced by the addition of cisplatin or bevacizumab. In addition, immunohistochemical and 18F‐FLT‐PET analyses of tumor response indicate that tumor volumes underestimate treatment efficacy, highlighting the importance of incorporating functional imaging techniques for accurate tumor monitoring in os
doi_str_mv 10.1002/ijc.28933
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1609505535</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3454151191</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3843-a7de13d6800fc83020a01d4e7de0a0ea3817a9cc6abc4ceffa7d0c12043ea9a73</originalsourceid><addsrcrecordid>eNpdkVtLw0AQhRdRbK0--AdkQQRf0s5mk2zyKMVLpeBLfQ6TzQS35FKzSUv99W4vKvg0w5xvhsMcxq4FjAWAPzFLPfbjRMoTNhSQKA98EZ6yodPAU0JGA3Zh7RJAiBCCczbwA6WED2rIFguqrGmb0lS95bqpMlNTzjem--Da2FWJnal50_KM1qjNV19hxo3lqDuzJr7TbEeNxdbtIq-anEp7yc4KLC1dHeuIvT89LqYv3vzteTZ9mHtaxoH0UOUkZB7FAIWOpTOLIPKA3Nh1hDIWChOtI8x0oKko3AJo5zuQhAkqOWL3h7urtvnsyXZpZaymssSamt6mIoIkhDCUoUNv_6HLpm9r525PQSiUOztiN0eqzyrK01VrKmy36c-_HHB3BNBqLIsWa_elPy5OwI8CcNzkwG1MSdtfXUC6Cyx1gaX7wNLZ63TfyG-RE4ee</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1609051704</pqid></control><display><type>article</type><title>Temsirolimus combined with cisplatin or bevacizumab is active in osteosarcoma models</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library All Journals</source><creator>Fleuren, Emmy D.G. ; Versleijen‐Jonkers, Yvonne M.H. ; Roeffen, Melissa H.S. ; Franssen, Gerben M. ; Flucke, Uta E. ; Houghton, Peter J. ; Oyen, Wim J.G. ; Boerman, Otto C. ; Graaf, Winette T.A.</creator><creatorcontrib>Fleuren, Emmy D.G. ; Versleijen‐Jonkers, Yvonne M.H. ; Roeffen, Melissa H.S. ; Franssen, Gerben M. ; Flucke, Uta E. ; Houghton, Peter J. ; Oyen, Wim J.G. ; Boerman, Otto C. ; Graaf, Winette T.A.</creatorcontrib><description>Mammalian target of rapamycin (mTOR) is a new promising oncological target. However, most clinical studies reported only modest antitumor activity during mTOR‐targeted monotherapies, including studies in osteosarcomas, emphasizing a need for improvement. We hypothesized that the combination with rationally selected other therapeutic agents may improve response. In this study, we examined the efficacy of the mTOR inhibitor temsirolimus combined with cisplatin or bevacizumab on the growth of human osteosarcoma xenografts (OS‐33 and OS‐1) in vivo, incorporating functional imaging techniques and microscopic analyses to unravel mechanisms of response. In both OS‐33 and OS‐1 models, the activity of temsirolimus was significantly enhanced by the addition of cisplatin (TC) or bevacizumab (TB). Extensive immunohistochemical analysis demonstrated apparent effects on tumor architecture, vasculature, apoptosis and the mTOR‐pathway with combined treatments. 3′‐Deoxy‐3′‐18F‐fluorothymidine (18F‐FLT) positron emission tomography (PET) scans showed a remarkable decrease in 18F‐FLT signal in TC‐ and TB‐treated OS‐1 tumors, which was already noticeable after 1 week of treatment. No baseline uptake was observed in the OS‐33 model. Both immunohistochemistry and 18F‐FLT‐PET demonstrated that responses as determined by caliper measurements underestimated the actual tumor response. Although 18F‐FLT‐PET could be used for accurate and early response monitoring for temsirolimus‐based therapies in the OS‐1 model, we could not evaluate OS‐33 tumors with this molecular imaging technique. Further research on the value of the use of 18F‐FLT‐PET in this setting in osteosarcomas is warranted. Overall, these findings urge the further exploration of TC and TB treatment for osteosarcoma (and other cancer) patients. What's new? Blockade of mammalian target of rapamycin (mTOR) represents a promising approach in the treatment of osteosarcoma, although mTOR monotherapy has met with mixed results in patients. This study suggests that combination therapy may be the key to success. Using in vivo osteosarcoma models, the authors show that the activity of the mTOR‐inhibitor temsirolimus is significantly enhanced by the addition of cisplatin or bevacizumab. In addition, immunohistochemical and 18F‐FLT‐PET analyses of tumor response indicate that tumor volumes underestimate treatment efficacy, highlighting the importance of incorporating functional imaging techniques for accurate tumor monitoring in osteosarcoma.</description><identifier>ISSN: 0020-7136</identifier><identifier>EISSN: 1097-0215</identifier><identifier>DOI: 10.1002/ijc.28933</identifier><identifier>PMID: 24771207</identifier><identifier>CODEN: IJCNAW</identifier><language>eng</language><publisher>Hoboken, NJ: Wiley-Blackwell</publisher><subject><![CDATA[18F‐FLT‐PET ; Angiogenesis Inhibitors - administration & dosage ; Animals ; Antibodies, Monoclonal, Humanized - administration & dosage ; Antineoplastic Combined Chemotherapy Protocols - therapeutic use ; Bevacizumab ; Biological and medical sciences ; Bone Neoplasms - drug therapy ; Cancer ; Cell Line, Tumor ; Chemotherapy ; cisplatin ; Cisplatin - administration & dosage ; Dideoxynucleosides ; Diseases of the osteoarticular system ; Female ; Fluorodeoxyglucose F18 ; Humans ; Medical imaging ; Medical research ; Medical sciences ; Mice ; Mice, Inbred BALB C ; Mice, Nude ; Multiple tumors. Solid tumors. Tumors in childhood (general aspects) ; osteosarcoma ; Osteosarcoma - drug therapy ; Pharmacology ; Positron-Emission Tomography ; Protein Kinase Inhibitors - administration & dosage ; Sirolimus - administration & dosage ; Sirolimus - analogs & derivatives ; temsirolimus ; Tomography, X-Ray Computed ; TOR Serine-Threonine Kinases - metabolism ; Tumors ; Tumors of striated muscle and skeleton ; Xenograft Model Antitumor Assays]]></subject><ispartof>International journal of cancer, 2014-12, Vol.135 (12), p.2770-2782</ispartof><rights>2014 UICC</rights><rights>2015 INIST-CNRS</rights><rights>2014 UICC.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3843-a7de13d6800fc83020a01d4e7de0a0ea3817a9cc6abc4ceffa7d0c12043ea9a73</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fijc.28933$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fijc.28933$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27922,27923,45572,45573</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28902640$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24771207$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fleuren, Emmy D.G.</creatorcontrib><creatorcontrib>Versleijen‐Jonkers, Yvonne M.H.</creatorcontrib><creatorcontrib>Roeffen, Melissa H.S.</creatorcontrib><creatorcontrib>Franssen, Gerben M.</creatorcontrib><creatorcontrib>Flucke, Uta E.</creatorcontrib><creatorcontrib>Houghton, Peter J.</creatorcontrib><creatorcontrib>Oyen, Wim J.G.</creatorcontrib><creatorcontrib>Boerman, Otto C.</creatorcontrib><creatorcontrib>Graaf, Winette T.A.</creatorcontrib><title>Temsirolimus combined with cisplatin or bevacizumab is active in osteosarcoma models</title><title>International journal of cancer</title><addtitle>Int J Cancer</addtitle><description>Mammalian target of rapamycin (mTOR) is a new promising oncological target. However, most clinical studies reported only modest antitumor activity during mTOR‐targeted monotherapies, including studies in osteosarcomas, emphasizing a need for improvement. We hypothesized that the combination with rationally selected other therapeutic agents may improve response. In this study, we examined the efficacy of the mTOR inhibitor temsirolimus combined with cisplatin or bevacizumab on the growth of human osteosarcoma xenografts (OS‐33 and OS‐1) in vivo, incorporating functional imaging techniques and microscopic analyses to unravel mechanisms of response. In both OS‐33 and OS‐1 models, the activity of temsirolimus was significantly enhanced by the addition of cisplatin (TC) or bevacizumab (TB). Extensive immunohistochemical analysis demonstrated apparent effects on tumor architecture, vasculature, apoptosis and the mTOR‐pathway with combined treatments. 3′‐Deoxy‐3′‐18F‐fluorothymidine (18F‐FLT) positron emission tomography (PET) scans showed a remarkable decrease in 18F‐FLT signal in TC‐ and TB‐treated OS‐1 tumors, which was already noticeable after 1 week of treatment. No baseline uptake was observed in the OS‐33 model. Both immunohistochemistry and 18F‐FLT‐PET demonstrated that responses as determined by caliper measurements underestimated the actual tumor response. Although 18F‐FLT‐PET could be used for accurate and early response monitoring for temsirolimus‐based therapies in the OS‐1 model, we could not evaluate OS‐33 tumors with this molecular imaging technique. Further research on the value of the use of 18F‐FLT‐PET in this setting in osteosarcomas is warranted. Overall, these findings urge the further exploration of TC and TB treatment for osteosarcoma (and other cancer) patients. What's new? Blockade of mammalian target of rapamycin (mTOR) represents a promising approach in the treatment of osteosarcoma, although mTOR monotherapy has met with mixed results in patients. This study suggests that combination therapy may be the key to success. Using in vivo osteosarcoma models, the authors show that the activity of the mTOR‐inhibitor temsirolimus is significantly enhanced by the addition of cisplatin or bevacizumab. In addition, immunohistochemical and 18F‐FLT‐PET analyses of tumor response indicate that tumor volumes underestimate treatment efficacy, highlighting the importance of incorporating functional imaging techniques for accurate tumor monitoring in osteosarcoma.</description><subject>18F‐FLT‐PET</subject><subject>Angiogenesis Inhibitors - administration &amp; dosage</subject><subject>Animals</subject><subject>Antibodies, Monoclonal, Humanized - administration &amp; dosage</subject><subject>Antineoplastic Combined Chemotherapy Protocols - therapeutic use</subject><subject>Bevacizumab</subject><subject>Biological and medical sciences</subject><subject>Bone Neoplasms - drug therapy</subject><subject>Cancer</subject><subject>Cell Line, Tumor</subject><subject>Chemotherapy</subject><subject>cisplatin</subject><subject>Cisplatin - administration &amp; dosage</subject><subject>Dideoxynucleosides</subject><subject>Diseases of the osteoarticular system</subject><subject>Female</subject><subject>Fluorodeoxyglucose F18</subject><subject>Humans</subject><subject>Medical imaging</subject><subject>Medical research</subject><subject>Medical sciences</subject><subject>Mice</subject><subject>Mice, Inbred BALB C</subject><subject>Mice, Nude</subject><subject>Multiple tumors. Solid tumors. Tumors in childhood (general aspects)</subject><subject>osteosarcoma</subject><subject>Osteosarcoma - drug therapy</subject><subject>Pharmacology</subject><subject>Positron-Emission Tomography</subject><subject>Protein Kinase Inhibitors - administration &amp; dosage</subject><subject>Sirolimus - administration &amp; dosage</subject><subject>Sirolimus - analogs &amp; derivatives</subject><subject>temsirolimus</subject><subject>Tomography, X-Ray Computed</subject><subject>TOR Serine-Threonine Kinases - metabolism</subject><subject>Tumors</subject><subject>Tumors of striated muscle and skeleton</subject><subject>Xenograft Model Antitumor Assays</subject><issn>0020-7136</issn><issn>1097-0215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkVtLw0AQhRdRbK0--AdkQQRf0s5mk2zyKMVLpeBLfQ6TzQS35FKzSUv99W4vKvg0w5xvhsMcxq4FjAWAPzFLPfbjRMoTNhSQKA98EZ6yodPAU0JGA3Zh7RJAiBCCczbwA6WED2rIFguqrGmb0lS95bqpMlNTzjem--Da2FWJnal50_KM1qjNV19hxo3lqDuzJr7TbEeNxdbtIq-anEp7yc4KLC1dHeuIvT89LqYv3vzteTZ9mHtaxoH0UOUkZB7FAIWOpTOLIPKA3Nh1hDIWChOtI8x0oKko3AJo5zuQhAkqOWL3h7urtvnsyXZpZaymssSamt6mIoIkhDCUoUNv_6HLpm9r525PQSiUOztiN0eqzyrK01VrKmy36c-_HHB3BNBqLIsWa_elPy5OwI8CcNzkwG1MSdtfXUC6Cyx1gaX7wNLZ63TfyG-RE4ee</recordid><startdate>20141215</startdate><enddate>20141215</enddate><creator>Fleuren, Emmy D.G.</creator><creator>Versleijen‐Jonkers, Yvonne M.H.</creator><creator>Roeffen, Melissa H.S.</creator><creator>Franssen, Gerben M.</creator><creator>Flucke, Uta E.</creator><creator>Houghton, Peter J.</creator><creator>Oyen, Wim J.G.</creator><creator>Boerman, Otto C.</creator><creator>Graaf, Winette T.A.</creator><general>Wiley-Blackwell</general><general>Wiley Subscription Services, Inc</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7T5</scope><scope>7TO</scope><scope>7U9</scope><scope>H94</scope><scope>K9.</scope><scope>7X8</scope></search><sort><creationdate>20141215</creationdate><title>Temsirolimus combined with cisplatin or bevacizumab is active in osteosarcoma models</title><author>Fleuren, Emmy D.G. ; Versleijen‐Jonkers, Yvonne M.H. ; Roeffen, Melissa H.S. ; Franssen, Gerben M. ; Flucke, Uta E. ; Houghton, Peter J. ; Oyen, Wim J.G. ; Boerman, Otto C. ; Graaf, Winette T.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3843-a7de13d6800fc83020a01d4e7de0a0ea3817a9cc6abc4ceffa7d0c12043ea9a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>18F‐FLT‐PET</topic><topic>Angiogenesis Inhibitors - administration &amp; dosage</topic><topic>Animals</topic><topic>Antibodies, Monoclonal, Humanized - administration &amp; dosage</topic><topic>Antineoplastic Combined Chemotherapy Protocols - therapeutic use</topic><topic>Bevacizumab</topic><topic>Biological and medical sciences</topic><topic>Bone Neoplasms - drug therapy</topic><topic>Cancer</topic><topic>Cell Line, Tumor</topic><topic>Chemotherapy</topic><topic>cisplatin</topic><topic>Cisplatin - administration &amp; dosage</topic><topic>Dideoxynucleosides</topic><topic>Diseases of the osteoarticular system</topic><topic>Female</topic><topic>Fluorodeoxyglucose F18</topic><topic>Humans</topic><topic>Medical imaging</topic><topic>Medical research</topic><topic>Medical sciences</topic><topic>Mice</topic><topic>Mice, Inbred BALB C</topic><topic>Mice, Nude</topic><topic>Multiple tumors. Solid tumors. Tumors in childhood (general aspects)</topic><topic>osteosarcoma</topic><topic>Osteosarcoma - drug therapy</topic><topic>Pharmacology</topic><topic>Positron-Emission Tomography</topic><topic>Protein Kinase Inhibitors - administration &amp; dosage</topic><topic>Sirolimus - administration &amp; dosage</topic><topic>Sirolimus - analogs &amp; derivatives</topic><topic>temsirolimus</topic><topic>Tomography, X-Ray Computed</topic><topic>TOR Serine-Threonine Kinases - metabolism</topic><topic>Tumors</topic><topic>Tumors of striated muscle and skeleton</topic><topic>Xenograft Model Antitumor Assays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fleuren, Emmy D.G.</creatorcontrib><creatorcontrib>Versleijen‐Jonkers, Yvonne M.H.</creatorcontrib><creatorcontrib>Roeffen, Melissa H.S.</creatorcontrib><creatorcontrib>Franssen, Gerben M.</creatorcontrib><creatorcontrib>Flucke, Uta E.</creatorcontrib><creatorcontrib>Houghton, Peter J.</creatorcontrib><creatorcontrib>Oyen, Wim J.G.</creatorcontrib><creatorcontrib>Boerman, Otto C.</creatorcontrib><creatorcontrib>Graaf, Winette T.A.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Immunology Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>International journal of cancer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fleuren, Emmy D.G.</au><au>Versleijen‐Jonkers, Yvonne M.H.</au><au>Roeffen, Melissa H.S.</au><au>Franssen, Gerben M.</au><au>Flucke, Uta E.</au><au>Houghton, Peter J.</au><au>Oyen, Wim J.G.</au><au>Boerman, Otto C.</au><au>Graaf, Winette T.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Temsirolimus combined with cisplatin or bevacizumab is active in osteosarcoma models</atitle><jtitle>International journal of cancer</jtitle><addtitle>Int J Cancer</addtitle><date>2014-12-15</date><risdate>2014</risdate><volume>135</volume><issue>12</issue><spage>2770</spage><epage>2782</epage><pages>2770-2782</pages><issn>0020-7136</issn><eissn>1097-0215</eissn><coden>IJCNAW</coden><abstract>Mammalian target of rapamycin (mTOR) is a new promising oncological target. However, most clinical studies reported only modest antitumor activity during mTOR‐targeted monotherapies, including studies in osteosarcomas, emphasizing a need for improvement. We hypothesized that the combination with rationally selected other therapeutic agents may improve response. In this study, we examined the efficacy of the mTOR inhibitor temsirolimus combined with cisplatin or bevacizumab on the growth of human osteosarcoma xenografts (OS‐33 and OS‐1) in vivo, incorporating functional imaging techniques and microscopic analyses to unravel mechanisms of response. In both OS‐33 and OS‐1 models, the activity of temsirolimus was significantly enhanced by the addition of cisplatin (TC) or bevacizumab (TB). Extensive immunohistochemical analysis demonstrated apparent effects on tumor architecture, vasculature, apoptosis and the mTOR‐pathway with combined treatments. 3′‐Deoxy‐3′‐18F‐fluorothymidine (18F‐FLT) positron emission tomography (PET) scans showed a remarkable decrease in 18F‐FLT signal in TC‐ and TB‐treated OS‐1 tumors, which was already noticeable after 1 week of treatment. No baseline uptake was observed in the OS‐33 model. Both immunohistochemistry and 18F‐FLT‐PET demonstrated that responses as determined by caliper measurements underestimated the actual tumor response. Although 18F‐FLT‐PET could be used for accurate and early response monitoring for temsirolimus‐based therapies in the OS‐1 model, we could not evaluate OS‐33 tumors with this molecular imaging technique. Further research on the value of the use of 18F‐FLT‐PET in this setting in osteosarcomas is warranted. Overall, these findings urge the further exploration of TC and TB treatment for osteosarcoma (and other cancer) patients. What's new? Blockade of mammalian target of rapamycin (mTOR) represents a promising approach in the treatment of osteosarcoma, although mTOR monotherapy has met with mixed results in patients. This study suggests that combination therapy may be the key to success. Using in vivo osteosarcoma models, the authors show that the activity of the mTOR‐inhibitor temsirolimus is significantly enhanced by the addition of cisplatin or bevacizumab. In addition, immunohistochemical and 18F‐FLT‐PET analyses of tumor response indicate that tumor volumes underestimate treatment efficacy, highlighting the importance of incorporating functional imaging techniques for accurate tumor monitoring in osteosarcoma.</abstract><cop>Hoboken, NJ</cop><pub>Wiley-Blackwell</pub><pmid>24771207</pmid><doi>10.1002/ijc.28933</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0020-7136
ispartof International journal of cancer, 2014-12, Vol.135 (12), p.2770-2782
issn 0020-7136
1097-0215
language eng
recordid cdi_proquest_miscellaneous_1609505535
source MEDLINE; EZB-FREE-00999 freely available EZB journals; Wiley Online Library All Journals
subjects 18F‐FLT‐PET
Angiogenesis Inhibitors - administration & dosage
Animals
Antibodies, Monoclonal, Humanized - administration & dosage
Antineoplastic Combined Chemotherapy Protocols - therapeutic use
Bevacizumab
Biological and medical sciences
Bone Neoplasms - drug therapy
Cancer
Cell Line, Tumor
Chemotherapy
cisplatin
Cisplatin - administration & dosage
Dideoxynucleosides
Diseases of the osteoarticular system
Female
Fluorodeoxyglucose F18
Humans
Medical imaging
Medical research
Medical sciences
Mice
Mice, Inbred BALB C
Mice, Nude
Multiple tumors. Solid tumors. Tumors in childhood (general aspects)
osteosarcoma
Osteosarcoma - drug therapy
Pharmacology
Positron-Emission Tomography
Protein Kinase Inhibitors - administration & dosage
Sirolimus - administration & dosage
Sirolimus - analogs & derivatives
temsirolimus
Tomography, X-Ray Computed
TOR Serine-Threonine Kinases - metabolism
Tumors
Tumors of striated muscle and skeleton
Xenograft Model Antitumor Assays
title Temsirolimus combined with cisplatin or bevacizumab is active in osteosarcoma models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T20%3A27%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Temsirolimus%20combined%20with%20cisplatin%20or%20bevacizumab%20is%20active%20in%20osteosarcoma%20models&rft.jtitle=International%20journal%20of%20cancer&rft.au=Fleuren,%20Emmy%20D.G.&rft.date=2014-12-15&rft.volume=135&rft.issue=12&rft.spage=2770&rft.epage=2782&rft.pages=2770-2782&rft.issn=0020-7136&rft.eissn=1097-0215&rft.coden=IJCNAW&rft_id=info:doi/10.1002/ijc.28933&rft_dat=%3Cproquest_pubme%3E3454151191%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1609051704&rft_id=info:pmid/24771207&rfr_iscdi=true