Modified ensemble Kalman filter for nuclear accident atmospheric dispersion: Prediction improved and source estimated

•A modified ensemble Kalmen filter data assimilation method is proposed.•The method can consider four main uncertain parameters in the puff model.•The prediction of radioactive material atmospheric dispersion is improved.•The source release rate and plume rise height are successfully reconstructed.•...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of hazardous materials 2014-09, Vol.280, p.143-155
Hauptverfasser: Zhang, X.L., Su, G.F., Yuan, H.Y., Chen, J.G., Huang, Q.Y.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 155
container_issue
container_start_page 143
container_title Journal of hazardous materials
container_volume 280
creator Zhang, X.L.
Su, G.F.
Yuan, H.Y.
Chen, J.G.
Huang, Q.Y.
description •A modified ensemble Kalmen filter data assimilation method is proposed.•The method can consider four main uncertain parameters in the puff model.•The prediction of radioactive material atmospheric dispersion is improved.•The source release rate and plume rise height are successfully reconstructed.•It can shorten the time lag in the response of ensemble Kalmen filter. Atmospheric dispersion models play an important role in nuclear power plant accident management. A reliable estimation of radioactive material distribution in short range (about 50km) is in urgent need for population sheltering and evacuation planning. However, the meteorological data and the source term which greatly influence the accuracy of the atmospheric dispersion models are usually poorly known at the early phase of the emergency. In this study, a modified ensemble Kalman filter data assimilation method in conjunction with a Lagrangian puff-model is proposed to simultaneously improve the model prediction and reconstruct the source terms for short range atmospheric dispersion using the off-site environmental monitoring data. Four main uncertainty parameters are considered: source release rate, plume rise height, wind speed and wind direction. Twin experiments show that the method effectively improves the predicted concentration distribution, and the temporal profiles of source release rate and plume rise height are also successfully reconstructed. Moreover, the time lag in the response of ensemble Kalman filter is shortened. The method proposed here can be a useful tool not only in the nuclear power plant accident emergency management but also in other similar situation where hazardous material is released into the atmosphere.
doi_str_mv 10.1016/j.jhazmat.2014.07.064
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1609100407</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304389414006396</els_id><sourcerecordid>1609100407</sourcerecordid><originalsourceid>FETCH-LOGICAL-c436t-d30ee3a29869c2f6f68576937344c5b40aa3b4295d941a5db20d73d757ac914c3</originalsourceid><addsrcrecordid>eNqFkE1v1DAQhi1ERZfCTwD5gsQlYRx_JVwQqvgSrcoBzpZjT1SvEnuxk0r01-NqFzhymjk878yrh5AXDFoGTL3Zt_tbe7_Yte2AiRZ0C0o8IjvWa95wztVjsgMOouH9IM7J01L2AMC0FE_IeSeZZB3XO7JdJx-mgJ5iLLiMM9Kvdl5spFOYV8x0SpnGzc1oM7XOBY9xpXZdUjncYg6O-lAOmEtI8S39ltEHt9adhuWQ0129a6OnJW3ZIcWyhtoY_TNyNtm54PPTvCA_Pn74fvm5ubr59OXy_VXjBFdr4zkgctsNvRpcN6lJ9VKrgWsuhJOjAGv5KLpB-kEwK_3Ygdfca6mtG5hw_IK8Pt6tXX5u9b1ZQnE4zzZi2ophCgYGIEBXVB5Rl1MpGSdzyLVs_mUYmAfjZm9Oxs2DcQPaVOM19_L0YhsX9H9TfxRX4NUJsMXZeco2ulD-cX0vGQdZuXdHDquQu4DZFBcwumo0o1uNT-E_VX4DAV2jNw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1609100407</pqid></control><display><type>article</type><title>Modified ensemble Kalman filter for nuclear accident atmospheric dispersion: Prediction improved and source estimated</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Zhang, X.L. ; Su, G.F. ; Yuan, H.Y. ; Chen, J.G. ; Huang, Q.Y.</creator><creatorcontrib>Zhang, X.L. ; Su, G.F. ; Yuan, H.Y. ; Chen, J.G. ; Huang, Q.Y.</creatorcontrib><description>•A modified ensemble Kalmen filter data assimilation method is proposed.•The method can consider four main uncertain parameters in the puff model.•The prediction of radioactive material atmospheric dispersion is improved.•The source release rate and plume rise height are successfully reconstructed.•It can shorten the time lag in the response of ensemble Kalmen filter. Atmospheric dispersion models play an important role in nuclear power plant accident management. A reliable estimation of radioactive material distribution in short range (about 50km) is in urgent need for population sheltering and evacuation planning. However, the meteorological data and the source term which greatly influence the accuracy of the atmospheric dispersion models are usually poorly known at the early phase of the emergency. In this study, a modified ensemble Kalman filter data assimilation method in conjunction with a Lagrangian puff-model is proposed to simultaneously improve the model prediction and reconstruct the source terms for short range atmospheric dispersion using the off-site environmental monitoring data. Four main uncertainty parameters are considered: source release rate, plume rise height, wind speed and wind direction. Twin experiments show that the method effectively improves the predicted concentration distribution, and the temporal profiles of source release rate and plume rise height are also successfully reconstructed. Moreover, the time lag in the response of ensemble Kalman filter is shortened. The method proposed here can be a useful tool not only in the nuclear power plant accident emergency management but also in other similar situation where hazardous material is released into the atmosphere.</description><identifier>ISSN: 0304-3894</identifier><identifier>EISSN: 1873-3336</identifier><identifier>DOI: 10.1016/j.jhazmat.2014.07.064</identifier><identifier>PMID: 25151237</identifier><identifier>CODEN: JHMAD9</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>Air Pollution ; Applied sciences ; Atmospheric dispersion ; Computer Simulation ; Ensemble Kalman filter ; Exact sciences and technology ; Models, Theoretical ; Nuclear power plant accident ; Pollution ; Radioactive Hazard Release</subject><ispartof>Journal of hazardous materials, 2014-09, Vol.280, p.143-155</ispartof><rights>2014 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2014 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c436t-d30ee3a29869c2f6f68576937344c5b40aa3b4295d941a5db20d73d757ac914c3</citedby><cites>FETCH-LOGICAL-c436t-d30ee3a29869c2f6f68576937344c5b40aa3b4295d941a5db20d73d757ac914c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0304389414006396$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28851305$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25151237$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, X.L.</creatorcontrib><creatorcontrib>Su, G.F.</creatorcontrib><creatorcontrib>Yuan, H.Y.</creatorcontrib><creatorcontrib>Chen, J.G.</creatorcontrib><creatorcontrib>Huang, Q.Y.</creatorcontrib><title>Modified ensemble Kalman filter for nuclear accident atmospheric dispersion: Prediction improved and source estimated</title><title>Journal of hazardous materials</title><addtitle>J Hazard Mater</addtitle><description>•A modified ensemble Kalmen filter data assimilation method is proposed.•The method can consider four main uncertain parameters in the puff model.•The prediction of radioactive material atmospheric dispersion is improved.•The source release rate and plume rise height are successfully reconstructed.•It can shorten the time lag in the response of ensemble Kalmen filter. Atmospheric dispersion models play an important role in nuclear power plant accident management. A reliable estimation of radioactive material distribution in short range (about 50km) is in urgent need for population sheltering and evacuation planning. However, the meteorological data and the source term which greatly influence the accuracy of the atmospheric dispersion models are usually poorly known at the early phase of the emergency. In this study, a modified ensemble Kalman filter data assimilation method in conjunction with a Lagrangian puff-model is proposed to simultaneously improve the model prediction and reconstruct the source terms for short range atmospheric dispersion using the off-site environmental monitoring data. Four main uncertainty parameters are considered: source release rate, plume rise height, wind speed and wind direction. Twin experiments show that the method effectively improves the predicted concentration distribution, and the temporal profiles of source release rate and plume rise height are also successfully reconstructed. Moreover, the time lag in the response of ensemble Kalman filter is shortened. The method proposed here can be a useful tool not only in the nuclear power plant accident emergency management but also in other similar situation where hazardous material is released into the atmosphere.</description><subject>Air Pollution</subject><subject>Applied sciences</subject><subject>Atmospheric dispersion</subject><subject>Computer Simulation</subject><subject>Ensemble Kalman filter</subject><subject>Exact sciences and technology</subject><subject>Models, Theoretical</subject><subject>Nuclear power plant accident</subject><subject>Pollution</subject><subject>Radioactive Hazard Release</subject><issn>0304-3894</issn><issn>1873-3336</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkE1v1DAQhi1ERZfCTwD5gsQlYRx_JVwQqvgSrcoBzpZjT1SvEnuxk0r01-NqFzhymjk878yrh5AXDFoGTL3Zt_tbe7_Yte2AiRZ0C0o8IjvWa95wztVjsgMOouH9IM7J01L2AMC0FE_IeSeZZB3XO7JdJx-mgJ5iLLiMM9Kvdl5spFOYV8x0SpnGzc1oM7XOBY9xpXZdUjncYg6O-lAOmEtI8S39ltEHt9adhuWQ0129a6OnJW3ZIcWyhtoY_TNyNtm54PPTvCA_Pn74fvm5ubr59OXy_VXjBFdr4zkgctsNvRpcN6lJ9VKrgWsuhJOjAGv5KLpB-kEwK_3Ygdfca6mtG5hw_IK8Pt6tXX5u9b1ZQnE4zzZi2ophCgYGIEBXVB5Rl1MpGSdzyLVs_mUYmAfjZm9Oxs2DcQPaVOM19_L0YhsX9H9TfxRX4NUJsMXZeco2ulD-cX0vGQdZuXdHDquQu4DZFBcwumo0o1uNT-E_VX4DAV2jNw</recordid><startdate>20140915</startdate><enddate>20140915</enddate><creator>Zhang, X.L.</creator><creator>Su, G.F.</creator><creator>Yuan, H.Y.</creator><creator>Chen, J.G.</creator><creator>Huang, Q.Y.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20140915</creationdate><title>Modified ensemble Kalman filter for nuclear accident atmospheric dispersion: Prediction improved and source estimated</title><author>Zhang, X.L. ; Su, G.F. ; Yuan, H.Y. ; Chen, J.G. ; Huang, Q.Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c436t-d30ee3a29869c2f6f68576937344c5b40aa3b4295d941a5db20d73d757ac914c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Air Pollution</topic><topic>Applied sciences</topic><topic>Atmospheric dispersion</topic><topic>Computer Simulation</topic><topic>Ensemble Kalman filter</topic><topic>Exact sciences and technology</topic><topic>Models, Theoretical</topic><topic>Nuclear power plant accident</topic><topic>Pollution</topic><topic>Radioactive Hazard Release</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, X.L.</creatorcontrib><creatorcontrib>Su, G.F.</creatorcontrib><creatorcontrib>Yuan, H.Y.</creatorcontrib><creatorcontrib>Chen, J.G.</creatorcontrib><creatorcontrib>Huang, Q.Y.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of hazardous materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, X.L.</au><au>Su, G.F.</au><au>Yuan, H.Y.</au><au>Chen, J.G.</au><au>Huang, Q.Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modified ensemble Kalman filter for nuclear accident atmospheric dispersion: Prediction improved and source estimated</atitle><jtitle>Journal of hazardous materials</jtitle><addtitle>J Hazard Mater</addtitle><date>2014-09-15</date><risdate>2014</risdate><volume>280</volume><spage>143</spage><epage>155</epage><pages>143-155</pages><issn>0304-3894</issn><eissn>1873-3336</eissn><coden>JHMAD9</coden><abstract>•A modified ensemble Kalmen filter data assimilation method is proposed.•The method can consider four main uncertain parameters in the puff model.•The prediction of radioactive material atmospheric dispersion is improved.•The source release rate and plume rise height are successfully reconstructed.•It can shorten the time lag in the response of ensemble Kalmen filter. Atmospheric dispersion models play an important role in nuclear power plant accident management. A reliable estimation of radioactive material distribution in short range (about 50km) is in urgent need for population sheltering and evacuation planning. However, the meteorological data and the source term which greatly influence the accuracy of the atmospheric dispersion models are usually poorly known at the early phase of the emergency. In this study, a modified ensemble Kalman filter data assimilation method in conjunction with a Lagrangian puff-model is proposed to simultaneously improve the model prediction and reconstruct the source terms for short range atmospheric dispersion using the off-site environmental monitoring data. Four main uncertainty parameters are considered: source release rate, plume rise height, wind speed and wind direction. Twin experiments show that the method effectively improves the predicted concentration distribution, and the temporal profiles of source release rate and plume rise height are also successfully reconstructed. Moreover, the time lag in the response of ensemble Kalman filter is shortened. The method proposed here can be a useful tool not only in the nuclear power plant accident emergency management but also in other similar situation where hazardous material is released into the atmosphere.</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><pmid>25151237</pmid><doi>10.1016/j.jhazmat.2014.07.064</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0304-3894
ispartof Journal of hazardous materials, 2014-09, Vol.280, p.143-155
issn 0304-3894
1873-3336
language eng
recordid cdi_proquest_miscellaneous_1609100407
source MEDLINE; Elsevier ScienceDirect Journals
subjects Air Pollution
Applied sciences
Atmospheric dispersion
Computer Simulation
Ensemble Kalman filter
Exact sciences and technology
Models, Theoretical
Nuclear power plant accident
Pollution
Radioactive Hazard Release
title Modified ensemble Kalman filter for nuclear accident atmospheric dispersion: Prediction improved and source estimated
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T14%3A29%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modified%20ensemble%20Kalman%20filter%20for%20nuclear%20accident%20atmospheric%20dispersion:%20Prediction%20improved%20and%20source%20estimated&rft.jtitle=Journal%20of%20hazardous%20materials&rft.au=Zhang,%20X.L.&rft.date=2014-09-15&rft.volume=280&rft.spage=143&rft.epage=155&rft.pages=143-155&rft.issn=0304-3894&rft.eissn=1873-3336&rft.coden=JHMAD9&rft_id=info:doi/10.1016/j.jhazmat.2014.07.064&rft_dat=%3Cproquest_cross%3E1609100407%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1609100407&rft_id=info:pmid/25151237&rft_els_id=S0304389414006396&rfr_iscdi=true