Quantitative biomolecular imaging by dynamic nanomechanical mapping

The ability to 'see' down to nanoscale has always been one of the most challenging obstacles for researchers to address fundamental questions. For many years, researchers have been developing scanning probe microscopy techniques to improve imaging capability at nanoscale. Among them, atomi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical Society reviews 2014-11, Vol.43 (21), p.7412-7429
Hauptverfasser: Zhang, Shuai, Aslan, Hüsnü, Besenbacher, Flemming, Dong, Mingdong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7429
container_issue 21
container_start_page 7412
container_title Chemical Society reviews
container_volume 43
creator Zhang, Shuai
Aslan, Hüsnü
Besenbacher, Flemming
Dong, Mingdong
description The ability to 'see' down to nanoscale has always been one of the most challenging obstacles for researchers to address fundamental questions. For many years, researchers have been developing scanning probe microscopy techniques to improve imaging capability at nanoscale. Among them, atomic force microscopy (AFM) has received considerable attention, which allows probing topography of biological species at real space under physiological environment. Importantly, force measurements in AFM enable researchers to reveal not only the topography but also the relevant physical-chemical properties. AFM-based dynamic nanomechanical mapping (DNM) provides insights into the functions of biological systems by the interpretation of 'force', which are inaccessible by most of the other analytic techniques. This review is aiming to shed light on these recently developed AFM-based DNM techniques for biomolecular imaging, and discuss the relative applications in biological research from the nanomechanical point of view. This work summarises AFM-based dynamic nanomechanical mapping techniques for biomolecular imaging and its applications in bio-research.
doi_str_mv 10.1039/c4cs00176a
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1609098655</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1609098655</sourcerecordid><originalsourceid>FETCH-LOGICAL-c442t-42d1bc37dd0daa192b59beaad50ab5e9c8ead8cca5e60ee3b3c24a2d09bf2cc83</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMo7rp68a7UmwjVJE267XEpfsGCiHouk0m6Rvpl0wr992bddb15moHnmRfmJeSU0WtGo_QGBTpK2TyGPTJlIqahmAuxT6Y0onHoCZ-QI-c-_OYlfkgmXK4PmZyS7HmAurc99PbLBMo2VVMaHEroAlvBytarQI2BHmuoLAY11E1l8B1qi1AGFbStN47JQQGlMyfbOSNvd7ev2UO4fLp_zBbLEIXgfSi4ZgqjudZUA7CUK5kqA6AlBSVNiokBnSCCNDE1JlIRcgFc01QVHDGJZuRyk9t2zedgXJ9X1qEpS6hNM7icxTSlaRJL6dWrjYpd41xnirzt_D_dmDOar3_PM5G9_JS28PL5NndQldE79bclL5xthM7hjv617vnFfzxvdRF9AzW_fmw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1609098655</pqid></control><display><type>article</type><title>Quantitative biomolecular imaging by dynamic nanomechanical mapping</title><source>MEDLINE</source><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Zhang, Shuai ; Aslan, Hüsnü ; Besenbacher, Flemming ; Dong, Mingdong</creator><creatorcontrib>Zhang, Shuai ; Aslan, Hüsnü ; Besenbacher, Flemming ; Dong, Mingdong</creatorcontrib><description>The ability to 'see' down to nanoscale has always been one of the most challenging obstacles for researchers to address fundamental questions. For many years, researchers have been developing scanning probe microscopy techniques to improve imaging capability at nanoscale. Among them, atomic force microscopy (AFM) has received considerable attention, which allows probing topography of biological species at real space under physiological environment. Importantly, force measurements in AFM enable researchers to reveal not only the topography but also the relevant physical-chemical properties. AFM-based dynamic nanomechanical mapping (DNM) provides insights into the functions of biological systems by the interpretation of 'force', which are inaccessible by most of the other analytic techniques. This review is aiming to shed light on these recently developed AFM-based DNM techniques for biomolecular imaging, and discuss the relative applications in biological research from the nanomechanical point of view. This work summarises AFM-based dynamic nanomechanical mapping techniques for biomolecular imaging and its applications in bio-research.</description><identifier>ISSN: 0306-0012</identifier><identifier>EISSN: 1460-4744</identifier><identifier>DOI: 10.1039/c4cs00176a</identifier><identifier>PMID: 25103915</identifier><language>eng</language><publisher>England</publisher><subject>Animals ; Biomechanical Phenomena ; Equipment Design ; Humans ; Microscopy, Atomic Force - instrumentation ; Microscopy, Atomic Force - methods ; Nucleic Acids - analysis ; Proteins - analysis</subject><ispartof>Chemical Society reviews, 2014-11, Vol.43 (21), p.7412-7429</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c442t-42d1bc37dd0daa192b59beaad50ab5e9c8ead8cca5e60ee3b3c24a2d09bf2cc83</citedby><cites>FETCH-LOGICAL-c442t-42d1bc37dd0daa192b59beaad50ab5e9c8ead8cca5e60ee3b3c24a2d09bf2cc83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25103915$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Shuai</creatorcontrib><creatorcontrib>Aslan, Hüsnü</creatorcontrib><creatorcontrib>Besenbacher, Flemming</creatorcontrib><creatorcontrib>Dong, Mingdong</creatorcontrib><title>Quantitative biomolecular imaging by dynamic nanomechanical mapping</title><title>Chemical Society reviews</title><addtitle>Chem Soc Rev</addtitle><description>The ability to 'see' down to nanoscale has always been one of the most challenging obstacles for researchers to address fundamental questions. For many years, researchers have been developing scanning probe microscopy techniques to improve imaging capability at nanoscale. Among them, atomic force microscopy (AFM) has received considerable attention, which allows probing topography of biological species at real space under physiological environment. Importantly, force measurements in AFM enable researchers to reveal not only the topography but also the relevant physical-chemical properties. AFM-based dynamic nanomechanical mapping (DNM) provides insights into the functions of biological systems by the interpretation of 'force', which are inaccessible by most of the other analytic techniques. This review is aiming to shed light on these recently developed AFM-based DNM techniques for biomolecular imaging, and discuss the relative applications in biological research from the nanomechanical point of view. This work summarises AFM-based dynamic nanomechanical mapping techniques for biomolecular imaging and its applications in bio-research.</description><subject>Animals</subject><subject>Biomechanical Phenomena</subject><subject>Equipment Design</subject><subject>Humans</subject><subject>Microscopy, Atomic Force - instrumentation</subject><subject>Microscopy, Atomic Force - methods</subject><subject>Nucleic Acids - analysis</subject><subject>Proteins - analysis</subject><issn>0306-0012</issn><issn>1460-4744</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1LxDAQhoMo7rp68a7UmwjVJE267XEpfsGCiHouk0m6Rvpl0wr992bddb15moHnmRfmJeSU0WtGo_QGBTpK2TyGPTJlIqahmAuxT6Y0onHoCZ-QI-c-_OYlfkgmXK4PmZyS7HmAurc99PbLBMo2VVMaHEroAlvBytarQI2BHmuoLAY11E1l8B1qi1AGFbStN47JQQGlMyfbOSNvd7ev2UO4fLp_zBbLEIXgfSi4ZgqjudZUA7CUK5kqA6AlBSVNiokBnSCCNDE1JlIRcgFc01QVHDGJZuRyk9t2zedgXJ9X1qEpS6hNM7icxTSlaRJL6dWrjYpd41xnirzt_D_dmDOar3_PM5G9_JS28PL5NndQldE79bclL5xthM7hjv617vnFfzxvdRF9AzW_fmw</recordid><startdate>20141107</startdate><enddate>20141107</enddate><creator>Zhang, Shuai</creator><creator>Aslan, Hüsnü</creator><creator>Besenbacher, Flemming</creator><creator>Dong, Mingdong</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20141107</creationdate><title>Quantitative biomolecular imaging by dynamic nanomechanical mapping</title><author>Zhang, Shuai ; Aslan, Hüsnü ; Besenbacher, Flemming ; Dong, Mingdong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c442t-42d1bc37dd0daa192b59beaad50ab5e9c8ead8cca5e60ee3b3c24a2d09bf2cc83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Animals</topic><topic>Biomechanical Phenomena</topic><topic>Equipment Design</topic><topic>Humans</topic><topic>Microscopy, Atomic Force - instrumentation</topic><topic>Microscopy, Atomic Force - methods</topic><topic>Nucleic Acids - analysis</topic><topic>Proteins - analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Shuai</creatorcontrib><creatorcontrib>Aslan, Hüsnü</creatorcontrib><creatorcontrib>Besenbacher, Flemming</creatorcontrib><creatorcontrib>Dong, Mingdong</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Chemical Society reviews</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Shuai</au><au>Aslan, Hüsnü</au><au>Besenbacher, Flemming</au><au>Dong, Mingdong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantitative biomolecular imaging by dynamic nanomechanical mapping</atitle><jtitle>Chemical Society reviews</jtitle><addtitle>Chem Soc Rev</addtitle><date>2014-11-07</date><risdate>2014</risdate><volume>43</volume><issue>21</issue><spage>7412</spage><epage>7429</epage><pages>7412-7429</pages><issn>0306-0012</issn><eissn>1460-4744</eissn><abstract>The ability to 'see' down to nanoscale has always been one of the most challenging obstacles for researchers to address fundamental questions. For many years, researchers have been developing scanning probe microscopy techniques to improve imaging capability at nanoscale. Among them, atomic force microscopy (AFM) has received considerable attention, which allows probing topography of biological species at real space under physiological environment. Importantly, force measurements in AFM enable researchers to reveal not only the topography but also the relevant physical-chemical properties. AFM-based dynamic nanomechanical mapping (DNM) provides insights into the functions of biological systems by the interpretation of 'force', which are inaccessible by most of the other analytic techniques. This review is aiming to shed light on these recently developed AFM-based DNM techniques for biomolecular imaging, and discuss the relative applications in biological research from the nanomechanical point of view. This work summarises AFM-based dynamic nanomechanical mapping techniques for biomolecular imaging and its applications in bio-research.</abstract><cop>England</cop><pmid>25103915</pmid><doi>10.1039/c4cs00176a</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0306-0012
ispartof Chemical Society reviews, 2014-11, Vol.43 (21), p.7412-7429
issn 0306-0012
1460-4744
language eng
recordid cdi_proquest_miscellaneous_1609098655
source MEDLINE; Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Animals
Biomechanical Phenomena
Equipment Design
Humans
Microscopy, Atomic Force - instrumentation
Microscopy, Atomic Force - methods
Nucleic Acids - analysis
Proteins - analysis
title Quantitative biomolecular imaging by dynamic nanomechanical mapping
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T10%3A46%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantitative%20biomolecular%20imaging%20by%20dynamic%20nanomechanical%20mapping&rft.jtitle=Chemical%20Society%20reviews&rft.au=Zhang,%20Shuai&rft.date=2014-11-07&rft.volume=43&rft.issue=21&rft.spage=7412&rft.epage=7429&rft.pages=7412-7429&rft.issn=0306-0012&rft.eissn=1460-4744&rft_id=info:doi/10.1039/c4cs00176a&rft_dat=%3Cproquest_pubme%3E1609098655%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1609098655&rft_id=info:pmid/25103915&rfr_iscdi=true