Ingredient selection for plastic composite supports for L-(+)-lactic acid biofilm fermentation by Lactobacillus casei subsp. rhamnosus
Plastic composite supports containing 50% agricultural products (oat hulls, soybean hulls, yeast extract, soybean flour, dried bovine erythrocytes, bovine albumin, and/or mineral salts) and 50% (wt/wt) polypropylene were produced by high-temperature twin-screw extrusion. The research employed two ha...
Gespeichert in:
Veröffentlicht in: | Applied and Environmental Microbiology 1997-07, Vol.63 (7), p.2516-2523 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2523 |
---|---|
container_issue | 7 |
container_start_page | 2516 |
container_title | Applied and Environmental Microbiology |
container_volume | 63 |
creator | Ho, K.L.G. (Iowa State University, Ames, IA.) Pometto, A.L. III Hinz, P.N Dickson, J.S Demirci, A |
description | Plastic composite supports containing 50% agricultural products (oat hulls, soybean hulls, yeast extract, soybean flour, dried bovine erythrocytes, bovine albumin, and/or mineral salts) and 50% (wt/wt) polypropylene were produced by high-temperature twin-screw extrusion. The research employed two half sets of a five-factorial fractional design (2(5-1)) to evaluate the effects of different agricultural components on the properties of the plastic composite supports and to select the best plastic composite support formulation for lactic acid fermentation. The biofilm population was affected by the contact angle and relative hydrophobicity of the supports (r = 0.79 to 0.82). Lactic acid was produced by the suspended cells (r = 0.96) and the biofilm on the plastic composite support discs (r = 0.85). Incorporation of yeast extract into plastic composite supports enhanced growth of free and attached cells in minimal medium (P 0.0001). The presence of soybean hulls, yeast extract, or mineral salts in plastic composite supports produced less hydrophobic supports (P 0.0001) and enhanced cell attachment (P 0.03). Under all conditions, suspended-cell and polypropylene disc controls gave negligible lactic acid production and cell density. Plastic composite supports containing soybean hulls, yeast extract, soybean flour, bovine albumin, and mineral salts gave the highest biofilm population (2.3 X 10(9) CFU/g of support), cell density (absorbance of 1.8 at 620 nm), and lactic acid concentration (7.6 g/liter) in minimal medium |
doi_str_mv | 10.1128/AEM.63.7.2516-2523.1997 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_16088168</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>79125711</sourcerecordid><originalsourceid>FETCH-LOGICAL-c628t-804274e75de35c65c08de790a9916e2a3eb0315fa05d2cc19fb9b3800a29dce73</originalsourceid><addsrcrecordid>eNqFks1u1DAUhSMEKkPhBZAQASEEQgn-ie140UVVFag0iAV0bd04zowrJ07thKovwHPjdEYjyqYrS_d859i-Oln2GqMSY1J_Pj3_XnJaipIwzAvCCC2xlOJRtsJI1gWjlD_OVghJWRBSoafZsxivEEIV4vVRdiQJTlOyyv5cDJtgWmuGKY_GGT1ZP-SdD_noIE5W59r3o492Mnmcx9GHKd7J6-LDp4-FA70woG2bN9Z31vV5Z0Kf4uAuqbnN14nxTUKcm2OuIRqbopo4lnnYQj_4OMfn2ZMOXDQv9udxdvnl_NfZt2L94-vF2em60JzUU1GjiojKCNYayjRnGtWtERKBlJgbAtQ0iGLWAWIt0RrLrpENrRECIlttBD3OTna549z0Jo2GKYBTY7A9hFvlwar7ymC3auN_K8xrVsnkf7_3B389mzip3kZtnIPB-DkqITFhAuMHQcxRXafQh8Gq4gLTBXz7H3jl5zCkbSmCmKQ1IQskdpAOPsZgusPXMFJLcRSYXnGqhFqKo5biqKU4yfnq380cfPumJP3dXoeowXUBBm3jASOCsXR_wt7ssK3dbG9sMApif__SxLzcMR14BZuQYi5_pifIinH6FyLL4bE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>205938228</pqid></control><display><type>article</type><title>Ingredient selection for plastic composite supports for L-(+)-lactic acid biofilm fermentation by Lactobacillus casei subsp. rhamnosus</title><source>PubMed (Medline)</source><source>MEDLINE</source><source>American Society for Microbiology Journals</source><source>Alma/SFX Local Collection</source><creator>Ho, K.L.G. (Iowa State University, Ames, IA.) ; Pometto, A.L. III ; Hinz, P.N ; Dickson, J.S ; Demirci, A</creator><creatorcontrib>Ho, K.L.G. (Iowa State University, Ames, IA.) ; Pometto, A.L. III ; Hinz, P.N ; Dickson, J.S ; Demirci, A</creatorcontrib><description>Plastic composite supports containing 50% agricultural products (oat hulls, soybean hulls, yeast extract, soybean flour, dried bovine erythrocytes, bovine albumin, and/or mineral salts) and 50% (wt/wt) polypropylene were produced by high-temperature twin-screw extrusion. The research employed two half sets of a five-factorial fractional design (2(5-1)) to evaluate the effects of different agricultural components on the properties of the plastic composite supports and to select the best plastic composite support formulation for lactic acid fermentation. The biofilm population was affected by the contact angle and relative hydrophobicity of the supports (r = 0.79 to 0.82). Lactic acid was produced by the suspended cells (r = 0.96) and the biofilm on the plastic composite support discs (r = 0.85). Incorporation of yeast extract into plastic composite supports enhanced growth of free and attached cells in minimal medium (P 0.0001). The presence of soybean hulls, yeast extract, or mineral salts in plastic composite supports produced less hydrophobic supports (P 0.0001) and enhanced cell attachment (P 0.03). Under all conditions, suspended-cell and polypropylene disc controls gave negligible lactic acid production and cell density. Plastic composite supports containing soybean hulls, yeast extract, soybean flour, bovine albumin, and mineral salts gave the highest biofilm population (2.3 X 10(9) CFU/g of support), cell density (absorbance of 1.8 at 620 nm), and lactic acid concentration (7.6 g/liter) in minimal medium</description><identifier>ISSN: 0099-2240</identifier><identifier>EISSN: 1098-5336</identifier><identifier>DOI: 10.1128/AEM.63.7.2516-2523.1997</identifier><identifier>PMID: 9212402</identifier><identifier>CODEN: AEMIDF</identifier><language>eng</language><publisher>Washington, DC: American Society for Microbiology</publisher><subject>ACIDE LACTIQUE ; ACIDO LACTICO ; Animals ; Avena - metabolism ; Bacteria ; Biofilms - growth & development ; Biological and medical sciences ; Biotechnology ; Cattle ; Colony Count, Microbial ; Culture Media - analysis ; Culture Media - metabolism ; Erythrocytes - metabolism ; Feeds ; FERMENTACION ; FERMENTATION ; Food science ; Fundamental and applied biological sciences. Psychology ; Glycine max - metabolism ; Lactic Acid - metabolism ; Lacticaseibacillus casei - metabolism ; Lacticaseibacillus casei - physiology ; Lacticaseibacillus casei - ultrastructure ; LACTOBACILLUS CASEI ; Methods. Procedures. Technologies ; Microbial engineering. Fermentation and microbial culture technology ; Microscopy, Electron, Scanning ; Plastics ; Plastics - metabolism ; Salts - metabolism ; Serum Albumin, Bovine ; Water - metabolism ; Yeasts - metabolism</subject><ispartof>Applied and Environmental Microbiology, 1997-07, Vol.63 (7), p.2516-2523</ispartof><rights>1997 INIST-CNRS</rights><rights>Copyright American Society for Microbiology Jul 1997</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c628t-804274e75de35c65c08de790a9916e2a3eb0315fa05d2cc19fb9b3800a29dce73</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC168549/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC168549/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,724,777,781,882,3175,3176,27905,27906,53772,53774</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=2755283$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/9212402$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ho, K.L.G. (Iowa State University, Ames, IA.)</creatorcontrib><creatorcontrib>Pometto, A.L. III</creatorcontrib><creatorcontrib>Hinz, P.N</creatorcontrib><creatorcontrib>Dickson, J.S</creatorcontrib><creatorcontrib>Demirci, A</creatorcontrib><title>Ingredient selection for plastic composite supports for L-(+)-lactic acid biofilm fermentation by Lactobacillus casei subsp. rhamnosus</title><title>Applied and Environmental Microbiology</title><addtitle>Appl Environ Microbiol</addtitle><description>Plastic composite supports containing 50% agricultural products (oat hulls, soybean hulls, yeast extract, soybean flour, dried bovine erythrocytes, bovine albumin, and/or mineral salts) and 50% (wt/wt) polypropylene were produced by high-temperature twin-screw extrusion. The research employed two half sets of a five-factorial fractional design (2(5-1)) to evaluate the effects of different agricultural components on the properties of the plastic composite supports and to select the best plastic composite support formulation for lactic acid fermentation. The biofilm population was affected by the contact angle and relative hydrophobicity of the supports (r = 0.79 to 0.82). Lactic acid was produced by the suspended cells (r = 0.96) and the biofilm on the plastic composite support discs (r = 0.85). Incorporation of yeast extract into plastic composite supports enhanced growth of free and attached cells in minimal medium (P 0.0001). The presence of soybean hulls, yeast extract, or mineral salts in plastic composite supports produced less hydrophobic supports (P 0.0001) and enhanced cell attachment (P 0.03). Under all conditions, suspended-cell and polypropylene disc controls gave negligible lactic acid production and cell density. Plastic composite supports containing soybean hulls, yeast extract, soybean flour, bovine albumin, and mineral salts gave the highest biofilm population (2.3 X 10(9) CFU/g of support), cell density (absorbance of 1.8 at 620 nm), and lactic acid concentration (7.6 g/liter) in minimal medium</description><subject>ACIDE LACTIQUE</subject><subject>ACIDO LACTICO</subject><subject>Animals</subject><subject>Avena - metabolism</subject><subject>Bacteria</subject><subject>Biofilms - growth & development</subject><subject>Biological and medical sciences</subject><subject>Biotechnology</subject><subject>Cattle</subject><subject>Colony Count, Microbial</subject><subject>Culture Media - analysis</subject><subject>Culture Media - metabolism</subject><subject>Erythrocytes - metabolism</subject><subject>Feeds</subject><subject>FERMENTACION</subject><subject>FERMENTATION</subject><subject>Food science</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Glycine max - metabolism</subject><subject>Lactic Acid - metabolism</subject><subject>Lacticaseibacillus casei - metabolism</subject><subject>Lacticaseibacillus casei - physiology</subject><subject>Lacticaseibacillus casei - ultrastructure</subject><subject>LACTOBACILLUS CASEI</subject><subject>Methods. Procedures. Technologies</subject><subject>Microbial engineering. Fermentation and microbial culture technology</subject><subject>Microscopy, Electron, Scanning</subject><subject>Plastics</subject><subject>Plastics - metabolism</subject><subject>Salts - metabolism</subject><subject>Serum Albumin, Bovine</subject><subject>Water - metabolism</subject><subject>Yeasts - metabolism</subject><issn>0099-2240</issn><issn>1098-5336</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFks1u1DAUhSMEKkPhBZAQASEEQgn-ie140UVVFag0iAV0bd04zowrJ07thKovwHPjdEYjyqYrS_d859i-Oln2GqMSY1J_Pj3_XnJaipIwzAvCCC2xlOJRtsJI1gWjlD_OVghJWRBSoafZsxivEEIV4vVRdiQJTlOyyv5cDJtgWmuGKY_GGT1ZP-SdD_noIE5W59r3o492Mnmcx9GHKd7J6-LDp4-FA70woG2bN9Z31vV5Z0Kf4uAuqbnN14nxTUKcm2OuIRqbopo4lnnYQj_4OMfn2ZMOXDQv9udxdvnl_NfZt2L94-vF2em60JzUU1GjiojKCNYayjRnGtWtERKBlJgbAtQ0iGLWAWIt0RrLrpENrRECIlttBD3OTna549z0Jo2GKYBTY7A9hFvlwar7ymC3auN_K8xrVsnkf7_3B389mzip3kZtnIPB-DkqITFhAuMHQcxRXafQh8Gq4gLTBXz7H3jl5zCkbSmCmKQ1IQskdpAOPsZgusPXMFJLcRSYXnGqhFqKo5biqKU4yfnq380cfPumJP3dXoeowXUBBm3jASOCsXR_wt7ssK3dbG9sMApif__SxLzcMR14BZuQYi5_pifIinH6FyLL4bE</recordid><startdate>19970701</startdate><enddate>19970701</enddate><creator>Ho, K.L.G. (Iowa State University, Ames, IA.)</creator><creator>Pometto, A.L. III</creator><creator>Hinz, P.N</creator><creator>Dickson, J.S</creator><creator>Demirci, A</creator><general>American Society for Microbiology</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T7</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>19970701</creationdate><title>Ingredient selection for plastic composite supports for L-(+)-lactic acid biofilm fermentation by Lactobacillus casei subsp. rhamnosus</title><author>Ho, K.L.G. (Iowa State University, Ames, IA.) ; Pometto, A.L. III ; Hinz, P.N ; Dickson, J.S ; Demirci, A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c628t-804274e75de35c65c08de790a9916e2a3eb0315fa05d2cc19fb9b3800a29dce73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>ACIDE LACTIQUE</topic><topic>ACIDO LACTICO</topic><topic>Animals</topic><topic>Avena - metabolism</topic><topic>Bacteria</topic><topic>Biofilms - growth & development</topic><topic>Biological and medical sciences</topic><topic>Biotechnology</topic><topic>Cattle</topic><topic>Colony Count, Microbial</topic><topic>Culture Media - analysis</topic><topic>Culture Media - metabolism</topic><topic>Erythrocytes - metabolism</topic><topic>Feeds</topic><topic>FERMENTACION</topic><topic>FERMENTATION</topic><topic>Food science</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Glycine max - metabolism</topic><topic>Lactic Acid - metabolism</topic><topic>Lacticaseibacillus casei - metabolism</topic><topic>Lacticaseibacillus casei - physiology</topic><topic>Lacticaseibacillus casei - ultrastructure</topic><topic>LACTOBACILLUS CASEI</topic><topic>Methods. Procedures. Technologies</topic><topic>Microbial engineering. Fermentation and microbial culture technology</topic><topic>Microscopy, Electron, Scanning</topic><topic>Plastics</topic><topic>Plastics - metabolism</topic><topic>Salts - metabolism</topic><topic>Serum Albumin, Bovine</topic><topic>Water - metabolism</topic><topic>Yeasts - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ho, K.L.G. (Iowa State University, Ames, IA.)</creatorcontrib><creatorcontrib>Pometto, A.L. III</creatorcontrib><creatorcontrib>Hinz, P.N</creatorcontrib><creatorcontrib>Dickson, J.S</creatorcontrib><creatorcontrib>Demirci, A</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Applied and Environmental Microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ho, K.L.G. (Iowa State University, Ames, IA.)</au><au>Pometto, A.L. III</au><au>Hinz, P.N</au><au>Dickson, J.S</au><au>Demirci, A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ingredient selection for plastic composite supports for L-(+)-lactic acid biofilm fermentation by Lactobacillus casei subsp. rhamnosus</atitle><jtitle>Applied and Environmental Microbiology</jtitle><addtitle>Appl Environ Microbiol</addtitle><date>1997-07-01</date><risdate>1997</risdate><volume>63</volume><issue>7</issue><spage>2516</spage><epage>2523</epage><pages>2516-2523</pages><issn>0099-2240</issn><eissn>1098-5336</eissn><coden>AEMIDF</coden><abstract>Plastic composite supports containing 50% agricultural products (oat hulls, soybean hulls, yeast extract, soybean flour, dried bovine erythrocytes, bovine albumin, and/or mineral salts) and 50% (wt/wt) polypropylene were produced by high-temperature twin-screw extrusion. The research employed two half sets of a five-factorial fractional design (2(5-1)) to evaluate the effects of different agricultural components on the properties of the plastic composite supports and to select the best plastic composite support formulation for lactic acid fermentation. The biofilm population was affected by the contact angle and relative hydrophobicity of the supports (r = 0.79 to 0.82). Lactic acid was produced by the suspended cells (r = 0.96) and the biofilm on the plastic composite support discs (r = 0.85). Incorporation of yeast extract into plastic composite supports enhanced growth of free and attached cells in minimal medium (P 0.0001). The presence of soybean hulls, yeast extract, or mineral salts in plastic composite supports produced less hydrophobic supports (P 0.0001) and enhanced cell attachment (P 0.03). Under all conditions, suspended-cell and polypropylene disc controls gave negligible lactic acid production and cell density. Plastic composite supports containing soybean hulls, yeast extract, soybean flour, bovine albumin, and mineral salts gave the highest biofilm population (2.3 X 10(9) CFU/g of support), cell density (absorbance of 1.8 at 620 nm), and lactic acid concentration (7.6 g/liter) in minimal medium</abstract><cop>Washington, DC</cop><pub>American Society for Microbiology</pub><pmid>9212402</pmid><doi>10.1128/AEM.63.7.2516-2523.1997</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0099-2240 |
ispartof | Applied and Environmental Microbiology, 1997-07, Vol.63 (7), p.2516-2523 |
issn | 0099-2240 1098-5336 |
language | eng |
recordid | cdi_proquest_miscellaneous_16088168 |
source | PubMed (Medline); MEDLINE; American Society for Microbiology Journals; Alma/SFX Local Collection |
subjects | ACIDE LACTIQUE ACIDO LACTICO Animals Avena - metabolism Bacteria Biofilms - growth & development Biological and medical sciences Biotechnology Cattle Colony Count, Microbial Culture Media - analysis Culture Media - metabolism Erythrocytes - metabolism Feeds FERMENTACION FERMENTATION Food science Fundamental and applied biological sciences. Psychology Glycine max - metabolism Lactic Acid - metabolism Lacticaseibacillus casei - metabolism Lacticaseibacillus casei - physiology Lacticaseibacillus casei - ultrastructure LACTOBACILLUS CASEI Methods. Procedures. Technologies Microbial engineering. Fermentation and microbial culture technology Microscopy, Electron, Scanning Plastics Plastics - metabolism Salts - metabolism Serum Albumin, Bovine Water - metabolism Yeasts - metabolism |
title | Ingredient selection for plastic composite supports for L-(+)-lactic acid biofilm fermentation by Lactobacillus casei subsp. rhamnosus |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T16%3A32%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ingredient%20selection%20for%20plastic%20composite%20supports%20for%20L-(+)-lactic%20acid%20biofilm%20fermentation%20by%20Lactobacillus%20casei%20subsp.%20rhamnosus&rft.jtitle=Applied%20and%20Environmental%20Microbiology&rft.au=Ho,%20K.L.G.%20(Iowa%20State%20University,%20Ames,%20IA.)&rft.date=1997-07-01&rft.volume=63&rft.issue=7&rft.spage=2516&rft.epage=2523&rft.pages=2516-2523&rft.issn=0099-2240&rft.eissn=1098-5336&rft.coden=AEMIDF&rft_id=info:doi/10.1128/AEM.63.7.2516-2523.1997&rft_dat=%3Cproquest_pubme%3E79125711%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=205938228&rft_id=info:pmid/9212402&rfr_iscdi=true |