Ingredient selection for plastic composite supports for L-(+)-lactic acid biofilm fermentation by Lactobacillus casei subsp. rhamnosus

Plastic composite supports containing 50% agricultural products (oat hulls, soybean hulls, yeast extract, soybean flour, dried bovine erythrocytes, bovine albumin, and/or mineral salts) and 50% (wt/wt) polypropylene were produced by high-temperature twin-screw extrusion. The research employed two ha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied and Environmental Microbiology 1997-07, Vol.63 (7), p.2516-2523
Hauptverfasser: Ho, K.L.G. (Iowa State University, Ames, IA.), Pometto, A.L. III, Hinz, P.N, Dickson, J.S, Demirci, A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2523
container_issue 7
container_start_page 2516
container_title Applied and Environmental Microbiology
container_volume 63
creator Ho, K.L.G. (Iowa State University, Ames, IA.)
Pometto, A.L. III
Hinz, P.N
Dickson, J.S
Demirci, A
description Plastic composite supports containing 50% agricultural products (oat hulls, soybean hulls, yeast extract, soybean flour, dried bovine erythrocytes, bovine albumin, and/or mineral salts) and 50% (wt/wt) polypropylene were produced by high-temperature twin-screw extrusion. The research employed two half sets of a five-factorial fractional design (2(5-1)) to evaluate the effects of different agricultural components on the properties of the plastic composite supports and to select the best plastic composite support formulation for lactic acid fermentation. The biofilm population was affected by the contact angle and relative hydrophobicity of the supports (r = 0.79 to 0.82). Lactic acid was produced by the suspended cells (r = 0.96) and the biofilm on the plastic composite support discs (r = 0.85). Incorporation of yeast extract into plastic composite supports enhanced growth of free and attached cells in minimal medium (P 0.0001). The presence of soybean hulls, yeast extract, or mineral salts in plastic composite supports produced less hydrophobic supports (P 0.0001) and enhanced cell attachment (P 0.03). Under all conditions, suspended-cell and polypropylene disc controls gave negligible lactic acid production and cell density. Plastic composite supports containing soybean hulls, yeast extract, soybean flour, bovine albumin, and mineral salts gave the highest biofilm population (2.3 X 10(9) CFU/g of support), cell density (absorbance of 1.8 at 620 nm), and lactic acid concentration (7.6 g/liter) in minimal medium
doi_str_mv 10.1128/AEM.63.7.2516-2523.1997
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_16088168</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>79125711</sourcerecordid><originalsourceid>FETCH-LOGICAL-c628t-804274e75de35c65c08de790a9916e2a3eb0315fa05d2cc19fb9b3800a29dce73</originalsourceid><addsrcrecordid>eNqFks1u1DAUhSMEKkPhBZAQASEEQgn-ie140UVVFag0iAV0bd04zowrJ07thKovwHPjdEYjyqYrS_d859i-Oln2GqMSY1J_Pj3_XnJaipIwzAvCCC2xlOJRtsJI1gWjlD_OVghJWRBSoafZsxivEEIV4vVRdiQJTlOyyv5cDJtgWmuGKY_GGT1ZP-SdD_noIE5W59r3o492Mnmcx9GHKd7J6-LDp4-FA70woG2bN9Z31vV5Z0Kf4uAuqbnN14nxTUKcm2OuIRqbopo4lnnYQj_4OMfn2ZMOXDQv9udxdvnl_NfZt2L94-vF2em60JzUU1GjiojKCNYayjRnGtWtERKBlJgbAtQ0iGLWAWIt0RrLrpENrRECIlttBD3OTna549z0Jo2GKYBTY7A9hFvlwar7ymC3auN_K8xrVsnkf7_3B389mzip3kZtnIPB-DkqITFhAuMHQcxRXafQh8Gq4gLTBXz7H3jl5zCkbSmCmKQ1IQskdpAOPsZgusPXMFJLcRSYXnGqhFqKo5biqKU4yfnq380cfPumJP3dXoeowXUBBm3jASOCsXR_wt7ssK3dbG9sMApif__SxLzcMR14BZuQYi5_pifIinH6FyLL4bE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>205938228</pqid></control><display><type>article</type><title>Ingredient selection for plastic composite supports for L-(+)-lactic acid biofilm fermentation by Lactobacillus casei subsp. rhamnosus</title><source>PubMed (Medline)</source><source>MEDLINE</source><source>American Society for Microbiology Journals</source><source>Alma/SFX Local Collection</source><creator>Ho, K.L.G. (Iowa State University, Ames, IA.) ; Pometto, A.L. III ; Hinz, P.N ; Dickson, J.S ; Demirci, A</creator><creatorcontrib>Ho, K.L.G. (Iowa State University, Ames, IA.) ; Pometto, A.L. III ; Hinz, P.N ; Dickson, J.S ; Demirci, A</creatorcontrib><description>Plastic composite supports containing 50% agricultural products (oat hulls, soybean hulls, yeast extract, soybean flour, dried bovine erythrocytes, bovine albumin, and/or mineral salts) and 50% (wt/wt) polypropylene were produced by high-temperature twin-screw extrusion. The research employed two half sets of a five-factorial fractional design (2(5-1)) to evaluate the effects of different agricultural components on the properties of the plastic composite supports and to select the best plastic composite support formulation for lactic acid fermentation. The biofilm population was affected by the contact angle and relative hydrophobicity of the supports (r = 0.79 to 0.82). Lactic acid was produced by the suspended cells (r = 0.96) and the biofilm on the plastic composite support discs (r = 0.85). Incorporation of yeast extract into plastic composite supports enhanced growth of free and attached cells in minimal medium (P 0.0001). The presence of soybean hulls, yeast extract, or mineral salts in plastic composite supports produced less hydrophobic supports (P 0.0001) and enhanced cell attachment (P 0.03). Under all conditions, suspended-cell and polypropylene disc controls gave negligible lactic acid production and cell density. Plastic composite supports containing soybean hulls, yeast extract, soybean flour, bovine albumin, and mineral salts gave the highest biofilm population (2.3 X 10(9) CFU/g of support), cell density (absorbance of 1.8 at 620 nm), and lactic acid concentration (7.6 g/liter) in minimal medium</description><identifier>ISSN: 0099-2240</identifier><identifier>EISSN: 1098-5336</identifier><identifier>DOI: 10.1128/AEM.63.7.2516-2523.1997</identifier><identifier>PMID: 9212402</identifier><identifier>CODEN: AEMIDF</identifier><language>eng</language><publisher>Washington, DC: American Society for Microbiology</publisher><subject>ACIDE LACTIQUE ; ACIDO LACTICO ; Animals ; Avena - metabolism ; Bacteria ; Biofilms - growth &amp; development ; Biological and medical sciences ; Biotechnology ; Cattle ; Colony Count, Microbial ; Culture Media - analysis ; Culture Media - metabolism ; Erythrocytes - metabolism ; Feeds ; FERMENTACION ; FERMENTATION ; Food science ; Fundamental and applied biological sciences. Psychology ; Glycine max - metabolism ; Lactic Acid - metabolism ; Lacticaseibacillus casei - metabolism ; Lacticaseibacillus casei - physiology ; Lacticaseibacillus casei - ultrastructure ; LACTOBACILLUS CASEI ; Methods. Procedures. Technologies ; Microbial engineering. Fermentation and microbial culture technology ; Microscopy, Electron, Scanning ; Plastics ; Plastics - metabolism ; Salts - metabolism ; Serum Albumin, Bovine ; Water - metabolism ; Yeasts - metabolism</subject><ispartof>Applied and Environmental Microbiology, 1997-07, Vol.63 (7), p.2516-2523</ispartof><rights>1997 INIST-CNRS</rights><rights>Copyright American Society for Microbiology Jul 1997</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c628t-804274e75de35c65c08de790a9916e2a3eb0315fa05d2cc19fb9b3800a29dce73</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC168549/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC168549/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,724,777,781,882,3175,3176,27905,27906,53772,53774</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=2755283$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/9212402$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ho, K.L.G. (Iowa State University, Ames, IA.)</creatorcontrib><creatorcontrib>Pometto, A.L. III</creatorcontrib><creatorcontrib>Hinz, P.N</creatorcontrib><creatorcontrib>Dickson, J.S</creatorcontrib><creatorcontrib>Demirci, A</creatorcontrib><title>Ingredient selection for plastic composite supports for L-(+)-lactic acid biofilm fermentation by Lactobacillus casei subsp. rhamnosus</title><title>Applied and Environmental Microbiology</title><addtitle>Appl Environ Microbiol</addtitle><description>Plastic composite supports containing 50% agricultural products (oat hulls, soybean hulls, yeast extract, soybean flour, dried bovine erythrocytes, bovine albumin, and/or mineral salts) and 50% (wt/wt) polypropylene were produced by high-temperature twin-screw extrusion. The research employed two half sets of a five-factorial fractional design (2(5-1)) to evaluate the effects of different agricultural components on the properties of the plastic composite supports and to select the best plastic composite support formulation for lactic acid fermentation. The biofilm population was affected by the contact angle and relative hydrophobicity of the supports (r = 0.79 to 0.82). Lactic acid was produced by the suspended cells (r = 0.96) and the biofilm on the plastic composite support discs (r = 0.85). Incorporation of yeast extract into plastic composite supports enhanced growth of free and attached cells in minimal medium (P 0.0001). The presence of soybean hulls, yeast extract, or mineral salts in plastic composite supports produced less hydrophobic supports (P 0.0001) and enhanced cell attachment (P 0.03). Under all conditions, suspended-cell and polypropylene disc controls gave negligible lactic acid production and cell density. Plastic composite supports containing soybean hulls, yeast extract, soybean flour, bovine albumin, and mineral salts gave the highest biofilm population (2.3 X 10(9) CFU/g of support), cell density (absorbance of 1.8 at 620 nm), and lactic acid concentration (7.6 g/liter) in minimal medium</description><subject>ACIDE LACTIQUE</subject><subject>ACIDO LACTICO</subject><subject>Animals</subject><subject>Avena - metabolism</subject><subject>Bacteria</subject><subject>Biofilms - growth &amp; development</subject><subject>Biological and medical sciences</subject><subject>Biotechnology</subject><subject>Cattle</subject><subject>Colony Count, Microbial</subject><subject>Culture Media - analysis</subject><subject>Culture Media - metabolism</subject><subject>Erythrocytes - metabolism</subject><subject>Feeds</subject><subject>FERMENTACION</subject><subject>FERMENTATION</subject><subject>Food science</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Glycine max - metabolism</subject><subject>Lactic Acid - metabolism</subject><subject>Lacticaseibacillus casei - metabolism</subject><subject>Lacticaseibacillus casei - physiology</subject><subject>Lacticaseibacillus casei - ultrastructure</subject><subject>LACTOBACILLUS CASEI</subject><subject>Methods. Procedures. Technologies</subject><subject>Microbial engineering. Fermentation and microbial culture technology</subject><subject>Microscopy, Electron, Scanning</subject><subject>Plastics</subject><subject>Plastics - metabolism</subject><subject>Salts - metabolism</subject><subject>Serum Albumin, Bovine</subject><subject>Water - metabolism</subject><subject>Yeasts - metabolism</subject><issn>0099-2240</issn><issn>1098-5336</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFks1u1DAUhSMEKkPhBZAQASEEQgn-ie140UVVFag0iAV0bd04zowrJ07thKovwHPjdEYjyqYrS_d859i-Oln2GqMSY1J_Pj3_XnJaipIwzAvCCC2xlOJRtsJI1gWjlD_OVghJWRBSoafZsxivEEIV4vVRdiQJTlOyyv5cDJtgWmuGKY_GGT1ZP-SdD_noIE5W59r3o492Mnmcx9GHKd7J6-LDp4-FA70woG2bN9Z31vV5Z0Kf4uAuqbnN14nxTUKcm2OuIRqbopo4lnnYQj_4OMfn2ZMOXDQv9udxdvnl_NfZt2L94-vF2em60JzUU1GjiojKCNYayjRnGtWtERKBlJgbAtQ0iGLWAWIt0RrLrpENrRECIlttBD3OTna549z0Jo2GKYBTY7A9hFvlwar7ymC3auN_K8xrVsnkf7_3B389mzip3kZtnIPB-DkqITFhAuMHQcxRXafQh8Gq4gLTBXz7H3jl5zCkbSmCmKQ1IQskdpAOPsZgusPXMFJLcRSYXnGqhFqKo5biqKU4yfnq380cfPumJP3dXoeowXUBBm3jASOCsXR_wt7ssK3dbG9sMApif__SxLzcMR14BZuQYi5_pifIinH6FyLL4bE</recordid><startdate>19970701</startdate><enddate>19970701</enddate><creator>Ho, K.L.G. (Iowa State University, Ames, IA.)</creator><creator>Pometto, A.L. III</creator><creator>Hinz, P.N</creator><creator>Dickson, J.S</creator><creator>Demirci, A</creator><general>American Society for Microbiology</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T7</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>19970701</creationdate><title>Ingredient selection for plastic composite supports for L-(+)-lactic acid biofilm fermentation by Lactobacillus casei subsp. rhamnosus</title><author>Ho, K.L.G. (Iowa State University, Ames, IA.) ; Pometto, A.L. III ; Hinz, P.N ; Dickson, J.S ; Demirci, A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c628t-804274e75de35c65c08de790a9916e2a3eb0315fa05d2cc19fb9b3800a29dce73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>ACIDE LACTIQUE</topic><topic>ACIDO LACTICO</topic><topic>Animals</topic><topic>Avena - metabolism</topic><topic>Bacteria</topic><topic>Biofilms - growth &amp; development</topic><topic>Biological and medical sciences</topic><topic>Biotechnology</topic><topic>Cattle</topic><topic>Colony Count, Microbial</topic><topic>Culture Media - analysis</topic><topic>Culture Media - metabolism</topic><topic>Erythrocytes - metabolism</topic><topic>Feeds</topic><topic>FERMENTACION</topic><topic>FERMENTATION</topic><topic>Food science</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Glycine max - metabolism</topic><topic>Lactic Acid - metabolism</topic><topic>Lacticaseibacillus casei - metabolism</topic><topic>Lacticaseibacillus casei - physiology</topic><topic>Lacticaseibacillus casei - ultrastructure</topic><topic>LACTOBACILLUS CASEI</topic><topic>Methods. Procedures. Technologies</topic><topic>Microbial engineering. Fermentation and microbial culture technology</topic><topic>Microscopy, Electron, Scanning</topic><topic>Plastics</topic><topic>Plastics - metabolism</topic><topic>Salts - metabolism</topic><topic>Serum Albumin, Bovine</topic><topic>Water - metabolism</topic><topic>Yeasts - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ho, K.L.G. (Iowa State University, Ames, IA.)</creatorcontrib><creatorcontrib>Pometto, A.L. III</creatorcontrib><creatorcontrib>Hinz, P.N</creatorcontrib><creatorcontrib>Dickson, J.S</creatorcontrib><creatorcontrib>Demirci, A</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Applied and Environmental Microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ho, K.L.G. (Iowa State University, Ames, IA.)</au><au>Pometto, A.L. III</au><au>Hinz, P.N</au><au>Dickson, J.S</au><au>Demirci, A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ingredient selection for plastic composite supports for L-(+)-lactic acid biofilm fermentation by Lactobacillus casei subsp. rhamnosus</atitle><jtitle>Applied and Environmental Microbiology</jtitle><addtitle>Appl Environ Microbiol</addtitle><date>1997-07-01</date><risdate>1997</risdate><volume>63</volume><issue>7</issue><spage>2516</spage><epage>2523</epage><pages>2516-2523</pages><issn>0099-2240</issn><eissn>1098-5336</eissn><coden>AEMIDF</coden><abstract>Plastic composite supports containing 50% agricultural products (oat hulls, soybean hulls, yeast extract, soybean flour, dried bovine erythrocytes, bovine albumin, and/or mineral salts) and 50% (wt/wt) polypropylene were produced by high-temperature twin-screw extrusion. The research employed two half sets of a five-factorial fractional design (2(5-1)) to evaluate the effects of different agricultural components on the properties of the plastic composite supports and to select the best plastic composite support formulation for lactic acid fermentation. The biofilm population was affected by the contact angle and relative hydrophobicity of the supports (r = 0.79 to 0.82). Lactic acid was produced by the suspended cells (r = 0.96) and the biofilm on the plastic composite support discs (r = 0.85). Incorporation of yeast extract into plastic composite supports enhanced growth of free and attached cells in minimal medium (P 0.0001). The presence of soybean hulls, yeast extract, or mineral salts in plastic composite supports produced less hydrophobic supports (P 0.0001) and enhanced cell attachment (P 0.03). Under all conditions, suspended-cell and polypropylene disc controls gave negligible lactic acid production and cell density. Plastic composite supports containing soybean hulls, yeast extract, soybean flour, bovine albumin, and mineral salts gave the highest biofilm population (2.3 X 10(9) CFU/g of support), cell density (absorbance of 1.8 at 620 nm), and lactic acid concentration (7.6 g/liter) in minimal medium</abstract><cop>Washington, DC</cop><pub>American Society for Microbiology</pub><pmid>9212402</pmid><doi>10.1128/AEM.63.7.2516-2523.1997</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0099-2240
ispartof Applied and Environmental Microbiology, 1997-07, Vol.63 (7), p.2516-2523
issn 0099-2240
1098-5336
language eng
recordid cdi_proquest_miscellaneous_16088168
source PubMed (Medline); MEDLINE; American Society for Microbiology Journals; Alma/SFX Local Collection
subjects ACIDE LACTIQUE
ACIDO LACTICO
Animals
Avena - metabolism
Bacteria
Biofilms - growth & development
Biological and medical sciences
Biotechnology
Cattle
Colony Count, Microbial
Culture Media - analysis
Culture Media - metabolism
Erythrocytes - metabolism
Feeds
FERMENTACION
FERMENTATION
Food science
Fundamental and applied biological sciences. Psychology
Glycine max - metabolism
Lactic Acid - metabolism
Lacticaseibacillus casei - metabolism
Lacticaseibacillus casei - physiology
Lacticaseibacillus casei - ultrastructure
LACTOBACILLUS CASEI
Methods. Procedures. Technologies
Microbial engineering. Fermentation and microbial culture technology
Microscopy, Electron, Scanning
Plastics
Plastics - metabolism
Salts - metabolism
Serum Albumin, Bovine
Water - metabolism
Yeasts - metabolism
title Ingredient selection for plastic composite supports for L-(+)-lactic acid biofilm fermentation by Lactobacillus casei subsp. rhamnosus
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T16%3A32%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ingredient%20selection%20for%20plastic%20composite%20supports%20for%20L-(+)-lactic%20acid%20biofilm%20fermentation%20by%20Lactobacillus%20casei%20subsp.%20rhamnosus&rft.jtitle=Applied%20and%20Environmental%20Microbiology&rft.au=Ho,%20K.L.G.%20(Iowa%20State%20University,%20Ames,%20IA.)&rft.date=1997-07-01&rft.volume=63&rft.issue=7&rft.spage=2516&rft.epage=2523&rft.pages=2516-2523&rft.issn=0099-2240&rft.eissn=1098-5336&rft.coden=AEMIDF&rft_id=info:doi/10.1128/AEM.63.7.2516-2523.1997&rft_dat=%3Cproquest_pubme%3E79125711%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=205938228&rft_id=info:pmid/9212402&rfr_iscdi=true