A site-directed approach for constructing temperature-sensitive ubiquitin-conjugating enzymes reveals a cell cycle function and growth function for RAD6
We have determined the gene sequence of a temperature-sensitive allele of the cell cycle-related ubiquitin-conjugating enzyme CDC34 (UBC 3) from Saccharomyces cerevisiae. The basis of temperature sensitivity is a missense mutation resulting in a proline to serine substitution at a residue that is co...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 1991-12, Vol.266 (35), p.24116-24120 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 24120 |
---|---|
container_issue | 35 |
container_start_page | 24116 |
container_title | The Journal of biological chemistry |
container_volume | 266 |
creator | ELLISON, K. D GWOZD, T PRENDERGAS, J. A PATERSON, M. C ELLISON, M. J |
description | We have determined the gene sequence of a temperature-sensitive allele of the cell cycle-related ubiquitin-conjugating enzyme
CDC34 (UBC 3) from Saccharomyces cerevisiae. The basis of temperature sensitivity is a missense mutation resulting in a proline
to serine substitution at a residue that is conserved in all ubiquitin-conjugating enzymes identified thus far. This observation
raised the possibility that other temperature-sensitive ubiquitin-conjugating enzymes could be generated in the same way.
We therefore created the corresponding substitution in the DNA repair-related ubiquitin-conjugating enzyme, RAD6 (UBC2), and
examined the effect of temperature on the cell proliferation and DNA repair-related functions of this altered polypeptide.
Yeast strains carrying this mutation proved to be temperature-sensitive with respect to cell proliferation but not with respect
to the DNA damage-processing phenotypes exhibited by other rad6 mutants. Upon further investigation of the proliferation defect
exhibited by this mutant, we discovered that other rad6 gene mutants deleted for the gene undergo cell cycle arrest at the
nonpermissive temperature, whereas the engineered temperature-sensitive allele showed no evidence of a cell cycle defect.
From these findings, we conclude that the proliferation function of RAD6 can be subdivided into a growth component and a cell
division cycle component and that the growth component is unrelated to the DNA repair functions of RAD6. A reasonable interpretation
of these results is that different proteins are targeted for ubiquitination in each case. The conserved proline residue of
RAD6 and CDC34 is part of a turn motif common to all ubiquitin-conjugating enzymes. It is therefore likely that site-directed
substitution of prolines located in turns can be generally applied for the creation of other temperature-sensitive ubiquitin-conjugating
enzymes and possibly other proteins as well. |
doi_str_mv | 10.1016/S0021-9258(18)54401-X |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_16081724</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>16081724</sourcerecordid><originalsourceid>FETCH-LOGICAL-c440t-a755a6677af2565e323b2b91ffa803bda531f9360e56e32945dbdfe72e05ad6d3</originalsourceid><addsrcrecordid>eNpFkdtu3CAQhlHVKt2mfYRIXFRVe-GWMQazl6ukJylSpR6kvUMYD2siG2_ATrR9kj5u2YOy3ID4v3-G4SfkCthHYCA__WKshGJZCvUe1AdRVQyK9TOyAKZ4wQWsn5PFE_KSvErpjuVVLeGCXEBdKan4gvxb0eQnLFof0U7YUrPdxtHYjroxUjuGNMXZTj5s6ITDFqOZ5ohFwpBt_gHp3Pj7OR9DkeG7eWMOLIa_uwETjfiApk_UUIt9T-3O9kjdHHLFMVATWrqJ4-PUne_2bX-ubuRr8sJlJ7457Zfkz5fPv6-_Fbc_vn6_Xt0WNk88FaYWwkhZ18aVQgrkJW_KZgnOGcV40xrBwS25ZChkFpeVaJvWYV0iE6aVLb8k745189j3M6ZJDz7tH2sCjnPSIJmCuqwyKI6gjWNKEZ3eRj-YuNPA9D4RfUhE779bg9KHRPQ6-65ODeZmwPbsOkaQ9bcn3SRrehdNsD49YQIqqSp1xjq_6R5zWrrxo-1w0KWUmgtdVgCS_wc5NKN9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>16081724</pqid></control><display><type>article</type><title>A site-directed approach for constructing temperature-sensitive ubiquitin-conjugating enzymes reveals a cell cycle function and growth function for RAD6</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>ELLISON, K. D ; GWOZD, T ; PRENDERGAS, J. A ; PATERSON, M. C ; ELLISON, M. J</creator><creatorcontrib>ELLISON, K. D ; GWOZD, T ; PRENDERGAS, J. A ; PATERSON, M. C ; ELLISON, M. J</creatorcontrib><description>We have determined the gene sequence of a temperature-sensitive allele of the cell cycle-related ubiquitin-conjugating enzyme
CDC34 (UBC 3) from Saccharomyces cerevisiae. The basis of temperature sensitivity is a missense mutation resulting in a proline
to serine substitution at a residue that is conserved in all ubiquitin-conjugating enzymes identified thus far. This observation
raised the possibility that other temperature-sensitive ubiquitin-conjugating enzymes could be generated in the same way.
We therefore created the corresponding substitution in the DNA repair-related ubiquitin-conjugating enzyme, RAD6 (UBC2), and
examined the effect of temperature on the cell proliferation and DNA repair-related functions of this altered polypeptide.
Yeast strains carrying this mutation proved to be temperature-sensitive with respect to cell proliferation but not with respect
to the DNA damage-processing phenotypes exhibited by other rad6 mutants. Upon further investigation of the proliferation defect
exhibited by this mutant, we discovered that other rad6 gene mutants deleted for the gene undergo cell cycle arrest at the
nonpermissive temperature, whereas the engineered temperature-sensitive allele showed no evidence of a cell cycle defect.
From these findings, we conclude that the proliferation function of RAD6 can be subdivided into a growth component and a cell
division cycle component and that the growth component is unrelated to the DNA repair functions of RAD6. A reasonable interpretation
of these results is that different proteins are targeted for ubiquitination in each case. The conserved proline residue of
RAD6 and CDC34 is part of a turn motif common to all ubiquitin-conjugating enzymes. It is therefore likely that site-directed
substitution of prolines located in turns can be generally applied for the creation of other temperature-sensitive ubiquitin-conjugating
enzymes and possibly other proteins as well.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1016/S0021-9258(18)54401-X</identifier><identifier>PMID: 1748683</identifier><identifier>CODEN: JBCHA3</identifier><language>eng</language><publisher>Bethesda, MD: American Society for Biochemistry and Molecular Biology</publisher><subject>Alleles ; Amino Acid Sequence ; Anaphase-Promoting Complex-Cyclosome ; Base Sequence ; Biological and medical sciences ; Cell Cycle ; Cell Division ; Fundamental and applied biological sciences. Psychology ; Fungal Proteins - genetics ; Genes, Fungal ; Genes. Genome ; Humans ; Ligases - genetics ; Molecular and cellular biology ; Molecular genetics ; Molecular Sequence Data ; Mutagenesis, Site-Directed ; Oligodeoxyribonucleotides ; Restriction Mapping ; Saccharomyces cerevisiae - enzymology ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - growth & development ; Saccharomyces cerevisiae - radiation effects ; Saccharomyces cerevisiae Proteins ; Sequence Homology, Nucleic Acid ; Temperature ; Ubiquitin-Conjugating Enzymes ; Ubiquitin-Protein Ligase Complexes ; Ubiquitin-Protein Ligases ; Ultraviolet Rays</subject><ispartof>The Journal of biological chemistry, 1991-12, Vol.266 (35), p.24116-24120</ispartof><rights>1992 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c440t-a755a6677af2565e323b2b91ffa803bda531f9360e56e32945dbdfe72e05ad6d3</citedby><cites>FETCH-LOGICAL-c440t-a755a6677af2565e323b2b91ffa803bda531f9360e56e32945dbdfe72e05ad6d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=5146848$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/1748683$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>ELLISON, K. D</creatorcontrib><creatorcontrib>GWOZD, T</creatorcontrib><creatorcontrib>PRENDERGAS, J. A</creatorcontrib><creatorcontrib>PATERSON, M. C</creatorcontrib><creatorcontrib>ELLISON, M. J</creatorcontrib><title>A site-directed approach for constructing temperature-sensitive ubiquitin-conjugating enzymes reveals a cell cycle function and growth function for RAD6</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>We have determined the gene sequence of a temperature-sensitive allele of the cell cycle-related ubiquitin-conjugating enzyme
CDC34 (UBC 3) from Saccharomyces cerevisiae. The basis of temperature sensitivity is a missense mutation resulting in a proline
to serine substitution at a residue that is conserved in all ubiquitin-conjugating enzymes identified thus far. This observation
raised the possibility that other temperature-sensitive ubiquitin-conjugating enzymes could be generated in the same way.
We therefore created the corresponding substitution in the DNA repair-related ubiquitin-conjugating enzyme, RAD6 (UBC2), and
examined the effect of temperature on the cell proliferation and DNA repair-related functions of this altered polypeptide.
Yeast strains carrying this mutation proved to be temperature-sensitive with respect to cell proliferation but not with respect
to the DNA damage-processing phenotypes exhibited by other rad6 mutants. Upon further investigation of the proliferation defect
exhibited by this mutant, we discovered that other rad6 gene mutants deleted for the gene undergo cell cycle arrest at the
nonpermissive temperature, whereas the engineered temperature-sensitive allele showed no evidence of a cell cycle defect.
From these findings, we conclude that the proliferation function of RAD6 can be subdivided into a growth component and a cell
division cycle component and that the growth component is unrelated to the DNA repair functions of RAD6. A reasonable interpretation
of these results is that different proteins are targeted for ubiquitination in each case. The conserved proline residue of
RAD6 and CDC34 is part of a turn motif common to all ubiquitin-conjugating enzymes. It is therefore likely that site-directed
substitution of prolines located in turns can be generally applied for the creation of other temperature-sensitive ubiquitin-conjugating
enzymes and possibly other proteins as well.</description><subject>Alleles</subject><subject>Amino Acid Sequence</subject><subject>Anaphase-Promoting Complex-Cyclosome</subject><subject>Base Sequence</subject><subject>Biological and medical sciences</subject><subject>Cell Cycle</subject><subject>Cell Division</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Fungal Proteins - genetics</subject><subject>Genes, Fungal</subject><subject>Genes. Genome</subject><subject>Humans</subject><subject>Ligases - genetics</subject><subject>Molecular and cellular biology</subject><subject>Molecular genetics</subject><subject>Molecular Sequence Data</subject><subject>Mutagenesis, Site-Directed</subject><subject>Oligodeoxyribonucleotides</subject><subject>Restriction Mapping</subject><subject>Saccharomyces cerevisiae - enzymology</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - growth & development</subject><subject>Saccharomyces cerevisiae - radiation effects</subject><subject>Saccharomyces cerevisiae Proteins</subject><subject>Sequence Homology, Nucleic Acid</subject><subject>Temperature</subject><subject>Ubiquitin-Conjugating Enzymes</subject><subject>Ubiquitin-Protein Ligase Complexes</subject><subject>Ubiquitin-Protein Ligases</subject><subject>Ultraviolet Rays</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1991</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpFkdtu3CAQhlHVKt2mfYRIXFRVe-GWMQazl6ukJylSpR6kvUMYD2siG2_ATrR9kj5u2YOy3ID4v3-G4SfkCthHYCA__WKshGJZCvUe1AdRVQyK9TOyAKZ4wQWsn5PFE_KSvErpjuVVLeGCXEBdKan4gvxb0eQnLFof0U7YUrPdxtHYjroxUjuGNMXZTj5s6ITDFqOZ5ohFwpBt_gHp3Pj7OR9DkeG7eWMOLIa_uwETjfiApk_UUIt9T-3O9kjdHHLFMVATWrqJ4-PUne_2bX-ubuRr8sJlJ7457Zfkz5fPv6-_Fbc_vn6_Xt0WNk88FaYWwkhZ18aVQgrkJW_KZgnOGcV40xrBwS25ZChkFpeVaJvWYV0iE6aVLb8k745189j3M6ZJDz7tH2sCjnPSIJmCuqwyKI6gjWNKEZ3eRj-YuNPA9D4RfUhE779bg9KHRPQ6-65ODeZmwPbsOkaQ9bcn3SRrehdNsD49YQIqqSp1xjq_6R5zWrrxo-1w0KWUmgtdVgCS_wc5NKN9</recordid><startdate>19911215</startdate><enddate>19911215</enddate><creator>ELLISON, K. D</creator><creator>GWOZD, T</creator><creator>PRENDERGAS, J. A</creator><creator>PATERSON, M. C</creator><creator>ELLISON, M. J</creator><general>American Society for Biochemistry and Molecular Biology</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>19911215</creationdate><title>A site-directed approach for constructing temperature-sensitive ubiquitin-conjugating enzymes reveals a cell cycle function and growth function for RAD6</title><author>ELLISON, K. D ; GWOZD, T ; PRENDERGAS, J. A ; PATERSON, M. C ; ELLISON, M. J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c440t-a755a6677af2565e323b2b91ffa803bda531f9360e56e32945dbdfe72e05ad6d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1991</creationdate><topic>Alleles</topic><topic>Amino Acid Sequence</topic><topic>Anaphase-Promoting Complex-Cyclosome</topic><topic>Base Sequence</topic><topic>Biological and medical sciences</topic><topic>Cell Cycle</topic><topic>Cell Division</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Fungal Proteins - genetics</topic><topic>Genes, Fungal</topic><topic>Genes. Genome</topic><topic>Humans</topic><topic>Ligases - genetics</topic><topic>Molecular and cellular biology</topic><topic>Molecular genetics</topic><topic>Molecular Sequence Data</topic><topic>Mutagenesis, Site-Directed</topic><topic>Oligodeoxyribonucleotides</topic><topic>Restriction Mapping</topic><topic>Saccharomyces cerevisiae - enzymology</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - growth & development</topic><topic>Saccharomyces cerevisiae - radiation effects</topic><topic>Saccharomyces cerevisiae Proteins</topic><topic>Sequence Homology, Nucleic Acid</topic><topic>Temperature</topic><topic>Ubiquitin-Conjugating Enzymes</topic><topic>Ubiquitin-Protein Ligase Complexes</topic><topic>Ubiquitin-Protein Ligases</topic><topic>Ultraviolet Rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>ELLISON, K. D</creatorcontrib><creatorcontrib>GWOZD, T</creatorcontrib><creatorcontrib>PRENDERGAS, J. A</creatorcontrib><creatorcontrib>PATERSON, M. C</creatorcontrib><creatorcontrib>ELLISON, M. J</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>ELLISON, K. D</au><au>GWOZD, T</au><au>PRENDERGAS, J. A</au><au>PATERSON, M. C</au><au>ELLISON, M. J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A site-directed approach for constructing temperature-sensitive ubiquitin-conjugating enzymes reveals a cell cycle function and growth function for RAD6</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>1991-12-15</date><risdate>1991</risdate><volume>266</volume><issue>35</issue><spage>24116</spage><epage>24120</epage><pages>24116-24120</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><coden>JBCHA3</coden><abstract>We have determined the gene sequence of a temperature-sensitive allele of the cell cycle-related ubiquitin-conjugating enzyme
CDC34 (UBC 3) from Saccharomyces cerevisiae. The basis of temperature sensitivity is a missense mutation resulting in a proline
to serine substitution at a residue that is conserved in all ubiquitin-conjugating enzymes identified thus far. This observation
raised the possibility that other temperature-sensitive ubiquitin-conjugating enzymes could be generated in the same way.
We therefore created the corresponding substitution in the DNA repair-related ubiquitin-conjugating enzyme, RAD6 (UBC2), and
examined the effect of temperature on the cell proliferation and DNA repair-related functions of this altered polypeptide.
Yeast strains carrying this mutation proved to be temperature-sensitive with respect to cell proliferation but not with respect
to the DNA damage-processing phenotypes exhibited by other rad6 mutants. Upon further investigation of the proliferation defect
exhibited by this mutant, we discovered that other rad6 gene mutants deleted for the gene undergo cell cycle arrest at the
nonpermissive temperature, whereas the engineered temperature-sensitive allele showed no evidence of a cell cycle defect.
From these findings, we conclude that the proliferation function of RAD6 can be subdivided into a growth component and a cell
division cycle component and that the growth component is unrelated to the DNA repair functions of RAD6. A reasonable interpretation
of these results is that different proteins are targeted for ubiquitination in each case. The conserved proline residue of
RAD6 and CDC34 is part of a turn motif common to all ubiquitin-conjugating enzymes. It is therefore likely that site-directed
substitution of prolines located in turns can be generally applied for the creation of other temperature-sensitive ubiquitin-conjugating
enzymes and possibly other proteins as well.</abstract><cop>Bethesda, MD</cop><pub>American Society for Biochemistry and Molecular Biology</pub><pmid>1748683</pmid><doi>10.1016/S0021-9258(18)54401-X</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9258 |
ispartof | The Journal of biological chemistry, 1991-12, Vol.266 (35), p.24116-24120 |
issn | 0021-9258 1083-351X |
language | eng |
recordid | cdi_proquest_miscellaneous_16081724 |
source | MEDLINE; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Alleles Amino Acid Sequence Anaphase-Promoting Complex-Cyclosome Base Sequence Biological and medical sciences Cell Cycle Cell Division Fundamental and applied biological sciences. Psychology Fungal Proteins - genetics Genes, Fungal Genes. Genome Humans Ligases - genetics Molecular and cellular biology Molecular genetics Molecular Sequence Data Mutagenesis, Site-Directed Oligodeoxyribonucleotides Restriction Mapping Saccharomyces cerevisiae - enzymology Saccharomyces cerevisiae - genetics Saccharomyces cerevisiae - growth & development Saccharomyces cerevisiae - radiation effects Saccharomyces cerevisiae Proteins Sequence Homology, Nucleic Acid Temperature Ubiquitin-Conjugating Enzymes Ubiquitin-Protein Ligase Complexes Ubiquitin-Protein Ligases Ultraviolet Rays |
title | A site-directed approach for constructing temperature-sensitive ubiquitin-conjugating enzymes reveals a cell cycle function and growth function for RAD6 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T11%3A00%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20site-directed%20approach%20for%20constructing%20temperature-sensitive%20ubiquitin-conjugating%20enzymes%20reveals%20a%20cell%20cycle%20function%20and%20growth%20function%20for%20RAD6&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=ELLISON,%20K.%20D&rft.date=1991-12-15&rft.volume=266&rft.issue=35&rft.spage=24116&rft.epage=24120&rft.pages=24116-24120&rft.issn=0021-9258&rft.eissn=1083-351X&rft.coden=JBCHA3&rft_id=info:doi/10.1016/S0021-9258(18)54401-X&rft_dat=%3Cproquest_cross%3E16081724%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=16081724&rft_id=info:pmid/1748683&rfr_iscdi=true |