A site-directed approach for constructing temperature-sensitive ubiquitin-conjugating enzymes reveals a cell cycle function and growth function for RAD6

We have determined the gene sequence of a temperature-sensitive allele of the cell cycle-related ubiquitin-conjugating enzyme CDC34 (UBC 3) from Saccharomyces cerevisiae. The basis of temperature sensitivity is a missense mutation resulting in a proline to serine substitution at a residue that is co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 1991-12, Vol.266 (35), p.24116-24120
Hauptverfasser: ELLISON, K. D, GWOZD, T, PRENDERGAS, J. A, PATERSON, M. C, ELLISON, M. J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 24120
container_issue 35
container_start_page 24116
container_title The Journal of biological chemistry
container_volume 266
creator ELLISON, K. D
GWOZD, T
PRENDERGAS, J. A
PATERSON, M. C
ELLISON, M. J
description We have determined the gene sequence of a temperature-sensitive allele of the cell cycle-related ubiquitin-conjugating enzyme CDC34 (UBC 3) from Saccharomyces cerevisiae. The basis of temperature sensitivity is a missense mutation resulting in a proline to serine substitution at a residue that is conserved in all ubiquitin-conjugating enzymes identified thus far. This observation raised the possibility that other temperature-sensitive ubiquitin-conjugating enzymes could be generated in the same way. We therefore created the corresponding substitution in the DNA repair-related ubiquitin-conjugating enzyme, RAD6 (UBC2), and examined the effect of temperature on the cell proliferation and DNA repair-related functions of this altered polypeptide. Yeast strains carrying this mutation proved to be temperature-sensitive with respect to cell proliferation but not with respect to the DNA damage-processing phenotypes exhibited by other rad6 mutants. Upon further investigation of the proliferation defect exhibited by this mutant, we discovered that other rad6 gene mutants deleted for the gene undergo cell cycle arrest at the nonpermissive temperature, whereas the engineered temperature-sensitive allele showed no evidence of a cell cycle defect. From these findings, we conclude that the proliferation function of RAD6 can be subdivided into a growth component and a cell division cycle component and that the growth component is unrelated to the DNA repair functions of RAD6. A reasonable interpretation of these results is that different proteins are targeted for ubiquitination in each case. The conserved proline residue of RAD6 and CDC34 is part of a turn motif common to all ubiquitin-conjugating enzymes. It is therefore likely that site-directed substitution of prolines located in turns can be generally applied for the creation of other temperature-sensitive ubiquitin-conjugating enzymes and possibly other proteins as well.
doi_str_mv 10.1016/S0021-9258(18)54401-X
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_16081724</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>16081724</sourcerecordid><originalsourceid>FETCH-LOGICAL-c440t-a755a6677af2565e323b2b91ffa803bda531f9360e56e32945dbdfe72e05ad6d3</originalsourceid><addsrcrecordid>eNpFkdtu3CAQhlHVKt2mfYRIXFRVe-GWMQazl6ukJylSpR6kvUMYD2siG2_ATrR9kj5u2YOy3ID4v3-G4SfkCthHYCA__WKshGJZCvUe1AdRVQyK9TOyAKZ4wQWsn5PFE_KSvErpjuVVLeGCXEBdKan4gvxb0eQnLFof0U7YUrPdxtHYjroxUjuGNMXZTj5s6ITDFqOZ5ohFwpBt_gHp3Pj7OR9DkeG7eWMOLIa_uwETjfiApk_UUIt9T-3O9kjdHHLFMVATWrqJ4-PUne_2bX-ubuRr8sJlJ7457Zfkz5fPv6-_Fbc_vn6_Xt0WNk88FaYWwkhZ18aVQgrkJW_KZgnOGcV40xrBwS25ZChkFpeVaJvWYV0iE6aVLb8k745189j3M6ZJDz7tH2sCjnPSIJmCuqwyKI6gjWNKEZ3eRj-YuNPA9D4RfUhE779bg9KHRPQ6-65ODeZmwPbsOkaQ9bcn3SRrehdNsD49YQIqqSp1xjq_6R5zWrrxo-1w0KWUmgtdVgCS_wc5NKN9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>16081724</pqid></control><display><type>article</type><title>A site-directed approach for constructing temperature-sensitive ubiquitin-conjugating enzymes reveals a cell cycle function and growth function for RAD6</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>ELLISON, K. D ; GWOZD, T ; PRENDERGAS, J. A ; PATERSON, M. C ; ELLISON, M. J</creator><creatorcontrib>ELLISON, K. D ; GWOZD, T ; PRENDERGAS, J. A ; PATERSON, M. C ; ELLISON, M. J</creatorcontrib><description>We have determined the gene sequence of a temperature-sensitive allele of the cell cycle-related ubiquitin-conjugating enzyme CDC34 (UBC 3) from Saccharomyces cerevisiae. The basis of temperature sensitivity is a missense mutation resulting in a proline to serine substitution at a residue that is conserved in all ubiquitin-conjugating enzymes identified thus far. This observation raised the possibility that other temperature-sensitive ubiquitin-conjugating enzymes could be generated in the same way. We therefore created the corresponding substitution in the DNA repair-related ubiquitin-conjugating enzyme, RAD6 (UBC2), and examined the effect of temperature on the cell proliferation and DNA repair-related functions of this altered polypeptide. Yeast strains carrying this mutation proved to be temperature-sensitive with respect to cell proliferation but not with respect to the DNA damage-processing phenotypes exhibited by other rad6 mutants. Upon further investigation of the proliferation defect exhibited by this mutant, we discovered that other rad6 gene mutants deleted for the gene undergo cell cycle arrest at the nonpermissive temperature, whereas the engineered temperature-sensitive allele showed no evidence of a cell cycle defect. From these findings, we conclude that the proliferation function of RAD6 can be subdivided into a growth component and a cell division cycle component and that the growth component is unrelated to the DNA repair functions of RAD6. A reasonable interpretation of these results is that different proteins are targeted for ubiquitination in each case. The conserved proline residue of RAD6 and CDC34 is part of a turn motif common to all ubiquitin-conjugating enzymes. It is therefore likely that site-directed substitution of prolines located in turns can be generally applied for the creation of other temperature-sensitive ubiquitin-conjugating enzymes and possibly other proteins as well.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1016/S0021-9258(18)54401-X</identifier><identifier>PMID: 1748683</identifier><identifier>CODEN: JBCHA3</identifier><language>eng</language><publisher>Bethesda, MD: American Society for Biochemistry and Molecular Biology</publisher><subject>Alleles ; Amino Acid Sequence ; Anaphase-Promoting Complex-Cyclosome ; Base Sequence ; Biological and medical sciences ; Cell Cycle ; Cell Division ; Fundamental and applied biological sciences. Psychology ; Fungal Proteins - genetics ; Genes, Fungal ; Genes. Genome ; Humans ; Ligases - genetics ; Molecular and cellular biology ; Molecular genetics ; Molecular Sequence Data ; Mutagenesis, Site-Directed ; Oligodeoxyribonucleotides ; Restriction Mapping ; Saccharomyces cerevisiae - enzymology ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - growth &amp; development ; Saccharomyces cerevisiae - radiation effects ; Saccharomyces cerevisiae Proteins ; Sequence Homology, Nucleic Acid ; Temperature ; Ubiquitin-Conjugating Enzymes ; Ubiquitin-Protein Ligase Complexes ; Ubiquitin-Protein Ligases ; Ultraviolet Rays</subject><ispartof>The Journal of biological chemistry, 1991-12, Vol.266 (35), p.24116-24120</ispartof><rights>1992 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c440t-a755a6677af2565e323b2b91ffa803bda531f9360e56e32945dbdfe72e05ad6d3</citedby><cites>FETCH-LOGICAL-c440t-a755a6677af2565e323b2b91ffa803bda531f9360e56e32945dbdfe72e05ad6d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=5146848$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/1748683$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>ELLISON, K. D</creatorcontrib><creatorcontrib>GWOZD, T</creatorcontrib><creatorcontrib>PRENDERGAS, J. A</creatorcontrib><creatorcontrib>PATERSON, M. C</creatorcontrib><creatorcontrib>ELLISON, M. J</creatorcontrib><title>A site-directed approach for constructing temperature-sensitive ubiquitin-conjugating enzymes reveals a cell cycle function and growth function for RAD6</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>We have determined the gene sequence of a temperature-sensitive allele of the cell cycle-related ubiquitin-conjugating enzyme CDC34 (UBC 3) from Saccharomyces cerevisiae. The basis of temperature sensitivity is a missense mutation resulting in a proline to serine substitution at a residue that is conserved in all ubiquitin-conjugating enzymes identified thus far. This observation raised the possibility that other temperature-sensitive ubiquitin-conjugating enzymes could be generated in the same way. We therefore created the corresponding substitution in the DNA repair-related ubiquitin-conjugating enzyme, RAD6 (UBC2), and examined the effect of temperature on the cell proliferation and DNA repair-related functions of this altered polypeptide. Yeast strains carrying this mutation proved to be temperature-sensitive with respect to cell proliferation but not with respect to the DNA damage-processing phenotypes exhibited by other rad6 mutants. Upon further investigation of the proliferation defect exhibited by this mutant, we discovered that other rad6 gene mutants deleted for the gene undergo cell cycle arrest at the nonpermissive temperature, whereas the engineered temperature-sensitive allele showed no evidence of a cell cycle defect. From these findings, we conclude that the proliferation function of RAD6 can be subdivided into a growth component and a cell division cycle component and that the growth component is unrelated to the DNA repair functions of RAD6. A reasonable interpretation of these results is that different proteins are targeted for ubiquitination in each case. The conserved proline residue of RAD6 and CDC34 is part of a turn motif common to all ubiquitin-conjugating enzymes. It is therefore likely that site-directed substitution of prolines located in turns can be generally applied for the creation of other temperature-sensitive ubiquitin-conjugating enzymes and possibly other proteins as well.</description><subject>Alleles</subject><subject>Amino Acid Sequence</subject><subject>Anaphase-Promoting Complex-Cyclosome</subject><subject>Base Sequence</subject><subject>Biological and medical sciences</subject><subject>Cell Cycle</subject><subject>Cell Division</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Fungal Proteins - genetics</subject><subject>Genes, Fungal</subject><subject>Genes. Genome</subject><subject>Humans</subject><subject>Ligases - genetics</subject><subject>Molecular and cellular biology</subject><subject>Molecular genetics</subject><subject>Molecular Sequence Data</subject><subject>Mutagenesis, Site-Directed</subject><subject>Oligodeoxyribonucleotides</subject><subject>Restriction Mapping</subject><subject>Saccharomyces cerevisiae - enzymology</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - growth &amp; development</subject><subject>Saccharomyces cerevisiae - radiation effects</subject><subject>Saccharomyces cerevisiae Proteins</subject><subject>Sequence Homology, Nucleic Acid</subject><subject>Temperature</subject><subject>Ubiquitin-Conjugating Enzymes</subject><subject>Ubiquitin-Protein Ligase Complexes</subject><subject>Ubiquitin-Protein Ligases</subject><subject>Ultraviolet Rays</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1991</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpFkdtu3CAQhlHVKt2mfYRIXFRVe-GWMQazl6ukJylSpR6kvUMYD2siG2_ATrR9kj5u2YOy3ID4v3-G4SfkCthHYCA__WKshGJZCvUe1AdRVQyK9TOyAKZ4wQWsn5PFE_KSvErpjuVVLeGCXEBdKan4gvxb0eQnLFof0U7YUrPdxtHYjroxUjuGNMXZTj5s6ITDFqOZ5ohFwpBt_gHp3Pj7OR9DkeG7eWMOLIa_uwETjfiApk_UUIt9T-3O9kjdHHLFMVATWrqJ4-PUne_2bX-ubuRr8sJlJ7457Zfkz5fPv6-_Fbc_vn6_Xt0WNk88FaYWwkhZ18aVQgrkJW_KZgnOGcV40xrBwS25ZChkFpeVaJvWYV0iE6aVLb8k745189j3M6ZJDz7tH2sCjnPSIJmCuqwyKI6gjWNKEZ3eRj-YuNPA9D4RfUhE779bg9KHRPQ6-65ODeZmwPbsOkaQ9bcn3SRrehdNsD49YQIqqSp1xjq_6R5zWrrxo-1w0KWUmgtdVgCS_wc5NKN9</recordid><startdate>19911215</startdate><enddate>19911215</enddate><creator>ELLISON, K. D</creator><creator>GWOZD, T</creator><creator>PRENDERGAS, J. A</creator><creator>PATERSON, M. C</creator><creator>ELLISON, M. J</creator><general>American Society for Biochemistry and Molecular Biology</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>19911215</creationdate><title>A site-directed approach for constructing temperature-sensitive ubiquitin-conjugating enzymes reveals a cell cycle function and growth function for RAD6</title><author>ELLISON, K. D ; GWOZD, T ; PRENDERGAS, J. A ; PATERSON, M. C ; ELLISON, M. J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c440t-a755a6677af2565e323b2b91ffa803bda531f9360e56e32945dbdfe72e05ad6d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1991</creationdate><topic>Alleles</topic><topic>Amino Acid Sequence</topic><topic>Anaphase-Promoting Complex-Cyclosome</topic><topic>Base Sequence</topic><topic>Biological and medical sciences</topic><topic>Cell Cycle</topic><topic>Cell Division</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Fungal Proteins - genetics</topic><topic>Genes, Fungal</topic><topic>Genes. Genome</topic><topic>Humans</topic><topic>Ligases - genetics</topic><topic>Molecular and cellular biology</topic><topic>Molecular genetics</topic><topic>Molecular Sequence Data</topic><topic>Mutagenesis, Site-Directed</topic><topic>Oligodeoxyribonucleotides</topic><topic>Restriction Mapping</topic><topic>Saccharomyces cerevisiae - enzymology</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - growth &amp; development</topic><topic>Saccharomyces cerevisiae - radiation effects</topic><topic>Saccharomyces cerevisiae Proteins</topic><topic>Sequence Homology, Nucleic Acid</topic><topic>Temperature</topic><topic>Ubiquitin-Conjugating Enzymes</topic><topic>Ubiquitin-Protein Ligase Complexes</topic><topic>Ubiquitin-Protein Ligases</topic><topic>Ultraviolet Rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>ELLISON, K. D</creatorcontrib><creatorcontrib>GWOZD, T</creatorcontrib><creatorcontrib>PRENDERGAS, J. A</creatorcontrib><creatorcontrib>PATERSON, M. C</creatorcontrib><creatorcontrib>ELLISON, M. J</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>ELLISON, K. D</au><au>GWOZD, T</au><au>PRENDERGAS, J. A</au><au>PATERSON, M. C</au><au>ELLISON, M. J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A site-directed approach for constructing temperature-sensitive ubiquitin-conjugating enzymes reveals a cell cycle function and growth function for RAD6</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>1991-12-15</date><risdate>1991</risdate><volume>266</volume><issue>35</issue><spage>24116</spage><epage>24120</epage><pages>24116-24120</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><coden>JBCHA3</coden><abstract>We have determined the gene sequence of a temperature-sensitive allele of the cell cycle-related ubiquitin-conjugating enzyme CDC34 (UBC 3) from Saccharomyces cerevisiae. The basis of temperature sensitivity is a missense mutation resulting in a proline to serine substitution at a residue that is conserved in all ubiquitin-conjugating enzymes identified thus far. This observation raised the possibility that other temperature-sensitive ubiquitin-conjugating enzymes could be generated in the same way. We therefore created the corresponding substitution in the DNA repair-related ubiquitin-conjugating enzyme, RAD6 (UBC2), and examined the effect of temperature on the cell proliferation and DNA repair-related functions of this altered polypeptide. Yeast strains carrying this mutation proved to be temperature-sensitive with respect to cell proliferation but not with respect to the DNA damage-processing phenotypes exhibited by other rad6 mutants. Upon further investigation of the proliferation defect exhibited by this mutant, we discovered that other rad6 gene mutants deleted for the gene undergo cell cycle arrest at the nonpermissive temperature, whereas the engineered temperature-sensitive allele showed no evidence of a cell cycle defect. From these findings, we conclude that the proliferation function of RAD6 can be subdivided into a growth component and a cell division cycle component and that the growth component is unrelated to the DNA repair functions of RAD6. A reasonable interpretation of these results is that different proteins are targeted for ubiquitination in each case. The conserved proline residue of RAD6 and CDC34 is part of a turn motif common to all ubiquitin-conjugating enzymes. It is therefore likely that site-directed substitution of prolines located in turns can be generally applied for the creation of other temperature-sensitive ubiquitin-conjugating enzymes and possibly other proteins as well.</abstract><cop>Bethesda, MD</cop><pub>American Society for Biochemistry and Molecular Biology</pub><pmid>1748683</pmid><doi>10.1016/S0021-9258(18)54401-X</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 1991-12, Vol.266 (35), p.24116-24120
issn 0021-9258
1083-351X
language eng
recordid cdi_proquest_miscellaneous_16081724
source MEDLINE; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Alleles
Amino Acid Sequence
Anaphase-Promoting Complex-Cyclosome
Base Sequence
Biological and medical sciences
Cell Cycle
Cell Division
Fundamental and applied biological sciences. Psychology
Fungal Proteins - genetics
Genes, Fungal
Genes. Genome
Humans
Ligases - genetics
Molecular and cellular biology
Molecular genetics
Molecular Sequence Data
Mutagenesis, Site-Directed
Oligodeoxyribonucleotides
Restriction Mapping
Saccharomyces cerevisiae - enzymology
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae - growth & development
Saccharomyces cerevisiae - radiation effects
Saccharomyces cerevisiae Proteins
Sequence Homology, Nucleic Acid
Temperature
Ubiquitin-Conjugating Enzymes
Ubiquitin-Protein Ligase Complexes
Ubiquitin-Protein Ligases
Ultraviolet Rays
title A site-directed approach for constructing temperature-sensitive ubiquitin-conjugating enzymes reveals a cell cycle function and growth function for RAD6
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T11%3A00%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20site-directed%20approach%20for%20constructing%20temperature-sensitive%20ubiquitin-conjugating%20enzymes%20reveals%20a%20cell%20cycle%20function%20and%20growth%20function%20for%20RAD6&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=ELLISON,%20K.%20D&rft.date=1991-12-15&rft.volume=266&rft.issue=35&rft.spage=24116&rft.epage=24120&rft.pages=24116-24120&rft.issn=0021-9258&rft.eissn=1083-351X&rft.coden=JBCHA3&rft_id=info:doi/10.1016/S0021-9258(18)54401-X&rft_dat=%3Cproquest_cross%3E16081724%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=16081724&rft_id=info:pmid/1748683&rfr_iscdi=true