The Two-Stage Model of Carcinogenesis: Overcoming the Nonidentifiability Dilemma

The two‐stage mathematical model of carcinogenesis has been shown to be nonidentifiable whenever tumor incidence data alone is used to fit the model (Hanin and Yakovlev, 1996). This lack of identifiability implies that more than one parameter vector satisfies the optimization criteria for parameter...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Risk analysis 1997-06, Vol.17 (3), p.367-374
Hauptverfasser: Sherman, Claire D., Portier, Christopher J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 374
container_issue 3
container_start_page 367
container_title Risk analysis
container_volume 17
creator Sherman, Claire D.
Portier, Christopher J.
description The two‐stage mathematical model of carcinogenesis has been shown to be nonidentifiable whenever tumor incidence data alone is used to fit the model (Hanin and Yakovlev, 1996). This lack of identifiability implies that more than one parameter vector satisfies the optimization criteria for parameter estimation, e.g., maximum likelihood estimation. A question of greater concern to persons using the two‐stage model of carcinogenesis is under what conditions can identifiable parameters be obtained from the observed experimental data. We outline how to obtain identifiable parameters for the two‐stage model.
doi_str_mv 10.1111/j.1539-6924.1997.tb00875.x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_16076574</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>16076574</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4707-e1804b49679fd77aaac7473d5b4b65913fde594ee119e43b9e64ae0b73191d1c3</originalsourceid><addsrcrecordid>eNqVkMlOwzAURS0EgjJ8AlLEgl2CHU-YDUJlngVFsLOc5KW4JDHEKbR_j6tW3SK8eYt777F0ENojOCHhHYwSwqmKhUpZQpSSSZdhfCh5MllBvWW0ino4lWnMKE030Kb3I4wJxlyuo3WV0hQT1UOPg3eIBj8ufu7MEKI7V0AVuTLqmza3jRtCA976o-jhG9rc1bYZRl1Y3LvGFtB0trQms5XtptGpraCuzTZaK03lYWdxt9DL-dmgfxnfPlxc9U9u45xJLGMgh5hlTAmpykJKY0wumaQFz1gmuCK0LIArBkCIAkYzBYIZwJmkRJGC5HQL7c-5n637GoPvdG19DlVlGnBjr4nAUnDJ_i5yJYVgPBSP5sW8dd63UOrP1tamnWqC9cy7HumZXD2Tq2fe9cK7noTx7uKXcVZDsZwuRIf8eJ7_BE3Tf5D109XzCRUyEOI5wfoOJkuCaT90SEP19f5CX55enw9u1JtW9BcdX6H3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>15976645</pqid></control><display><type>article</type><title>The Two-Stage Model of Carcinogenesis: Overcoming the Nonidentifiability Dilemma</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Sherman, Claire D. ; Portier, Christopher J.</creator><creatorcontrib>Sherman, Claire D. ; Portier, Christopher J.</creatorcontrib><description>The two‐stage mathematical model of carcinogenesis has been shown to be nonidentifiable whenever tumor incidence data alone is used to fit the model (Hanin and Yakovlev, 1996). This lack of identifiability implies that more than one parameter vector satisfies the optimization criteria for parameter estimation, e.g., maximum likelihood estimation. A question of greater concern to persons using the two‐stage model of carcinogenesis is under what conditions can identifiable parameters be obtained from the observed experimental data. We outline how to obtain identifiable parameters for the two‐stage model.</description><identifier>ISSN: 0272-4332</identifier><identifier>EISSN: 1539-6924</identifier><identifier>DOI: 10.1111/j.1539-6924.1997.tb00875.x</identifier><identifier>PMID: 9232019</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Animals ; Cell Transformation, Neoplastic ; Cocarcinogenesis ; Female ; Humans ; Likelihood Functions ; Liver Neoplasms, Experimental - chemically induced ; Mathematics ; Methylene Chloride - toxicity ; Mice ; Models, Biological ; Nonidentifiable ; Risk ; two-stage model</subject><ispartof>Risk analysis, 1997-06, Vol.17 (3), p.367-374</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4707-e1804b49679fd77aaac7473d5b4b65913fde594ee119e43b9e64ae0b73191d1c3</citedby><cites>FETCH-LOGICAL-c4707-e1804b49679fd77aaac7473d5b4b65913fde594ee119e43b9e64ae0b73191d1c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1539-6924.1997.tb00875.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1539-6924.1997.tb00875.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/9232019$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sherman, Claire D.</creatorcontrib><creatorcontrib>Portier, Christopher J.</creatorcontrib><title>The Two-Stage Model of Carcinogenesis: Overcoming the Nonidentifiability Dilemma</title><title>Risk analysis</title><addtitle>Risk Anal</addtitle><description>The two‐stage mathematical model of carcinogenesis has been shown to be nonidentifiable whenever tumor incidence data alone is used to fit the model (Hanin and Yakovlev, 1996). This lack of identifiability implies that more than one parameter vector satisfies the optimization criteria for parameter estimation, e.g., maximum likelihood estimation. A question of greater concern to persons using the two‐stage model of carcinogenesis is under what conditions can identifiable parameters be obtained from the observed experimental data. We outline how to obtain identifiable parameters for the two‐stage model.</description><subject>Animals</subject><subject>Cell Transformation, Neoplastic</subject><subject>Cocarcinogenesis</subject><subject>Female</subject><subject>Humans</subject><subject>Likelihood Functions</subject><subject>Liver Neoplasms, Experimental - chemically induced</subject><subject>Mathematics</subject><subject>Methylene Chloride - toxicity</subject><subject>Mice</subject><subject>Models, Biological</subject><subject>Nonidentifiable</subject><subject>Risk</subject><subject>two-stage model</subject><issn>0272-4332</issn><issn>1539-6924</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqVkMlOwzAURS0EgjJ8AlLEgl2CHU-YDUJlngVFsLOc5KW4JDHEKbR_j6tW3SK8eYt777F0ENojOCHhHYwSwqmKhUpZQpSSSZdhfCh5MllBvWW0ino4lWnMKE030Kb3I4wJxlyuo3WV0hQT1UOPg3eIBj8ufu7MEKI7V0AVuTLqmza3jRtCA976o-jhG9rc1bYZRl1Y3LvGFtB0trQms5XtptGpraCuzTZaK03lYWdxt9DL-dmgfxnfPlxc9U9u45xJLGMgh5hlTAmpykJKY0wumaQFz1gmuCK0LIArBkCIAkYzBYIZwJmkRJGC5HQL7c-5n637GoPvdG19DlVlGnBjr4nAUnDJ_i5yJYVgPBSP5sW8dd63UOrP1tamnWqC9cy7HumZXD2Tq2fe9cK7noTx7uKXcVZDsZwuRIf8eJ7_BE3Tf5D109XzCRUyEOI5wfoOJkuCaT90SEP19f5CX55enw9u1JtW9BcdX6H3</recordid><startdate>199706</startdate><enddate>199706</enddate><creator>Sherman, Claire D.</creator><creator>Portier, Christopher J.</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U1</scope><scope>7U2</scope><scope>C1K</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>199706</creationdate><title>The Two-Stage Model of Carcinogenesis: Overcoming the Nonidentifiability Dilemma</title><author>Sherman, Claire D. ; Portier, Christopher J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4707-e1804b49679fd77aaac7473d5b4b65913fde594ee119e43b9e64ae0b73191d1c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Animals</topic><topic>Cell Transformation, Neoplastic</topic><topic>Cocarcinogenesis</topic><topic>Female</topic><topic>Humans</topic><topic>Likelihood Functions</topic><topic>Liver Neoplasms, Experimental - chemically induced</topic><topic>Mathematics</topic><topic>Methylene Chloride - toxicity</topic><topic>Mice</topic><topic>Models, Biological</topic><topic>Nonidentifiable</topic><topic>Risk</topic><topic>two-stage model</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sherman, Claire D.</creatorcontrib><creatorcontrib>Portier, Christopher J.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Risk Abstracts</collection><collection>Safety Science and Risk</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Risk analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sherman, Claire D.</au><au>Portier, Christopher J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Two-Stage Model of Carcinogenesis: Overcoming the Nonidentifiability Dilemma</atitle><jtitle>Risk analysis</jtitle><addtitle>Risk Anal</addtitle><date>1997-06</date><risdate>1997</risdate><volume>17</volume><issue>3</issue><spage>367</spage><epage>374</epage><pages>367-374</pages><issn>0272-4332</issn><eissn>1539-6924</eissn><abstract>The two‐stage mathematical model of carcinogenesis has been shown to be nonidentifiable whenever tumor incidence data alone is used to fit the model (Hanin and Yakovlev, 1996). This lack of identifiability implies that more than one parameter vector satisfies the optimization criteria for parameter estimation, e.g., maximum likelihood estimation. A question of greater concern to persons using the two‐stage model of carcinogenesis is under what conditions can identifiable parameters be obtained from the observed experimental data. We outline how to obtain identifiable parameters for the two‐stage model.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>9232019</pmid><doi>10.1111/j.1539-6924.1997.tb00875.x</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0272-4332
ispartof Risk analysis, 1997-06, Vol.17 (3), p.367-374
issn 0272-4332
1539-6924
language eng
recordid cdi_proquest_miscellaneous_16076574
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Animals
Cell Transformation, Neoplastic
Cocarcinogenesis
Female
Humans
Likelihood Functions
Liver Neoplasms, Experimental - chemically induced
Mathematics
Methylene Chloride - toxicity
Mice
Models, Biological
Nonidentifiable
Risk
two-stage model
title The Two-Stage Model of Carcinogenesis: Overcoming the Nonidentifiability Dilemma
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T12%3A54%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Two-Stage%20Model%20of%20Carcinogenesis:%20Overcoming%20the%20Nonidentifiability%20Dilemma&rft.jtitle=Risk%20analysis&rft.au=Sherman,%20Claire%20D.&rft.date=1997-06&rft.volume=17&rft.issue=3&rft.spage=367&rft.epage=374&rft.pages=367-374&rft.issn=0272-4332&rft.eissn=1539-6924&rft_id=info:doi/10.1111/j.1539-6924.1997.tb00875.x&rft_dat=%3Cproquest_cross%3E16076574%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=15976645&rft_id=info:pmid/9232019&rfr_iscdi=true