Use of power index and two-phase density approach to study fine root dynamics

Dynamics of fine roots are analyzed in terms of variation in functional soil volume, i.e., the volume of soil occupied by active fine roots. Functional soil volume decreases with drier climatic conditions while the substantiated rooting density, i.e., rooting density within the functional soil volum...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ecological modelling 1997-02, Vol.95 (1), p.87-93
Hauptverfasser: Wu, Hsin-i, Hatton, Thomas J., Stoker, Revin L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 93
container_issue 1
container_start_page 87
container_title Ecological modelling
container_volume 95
creator Wu, Hsin-i
Hatton, Thomas J.
Stoker, Revin L.
description Dynamics of fine roots are analyzed in terms of variation in functional soil volume, i.e., the volume of soil occupied by active fine roots. Functional soil volume decreases with drier climatic conditions while the substantiated rooting density, i.e., rooting density within the functional soil volume, remains constant. Substantiated rooting density differs from mean root density, which is defined as root biomass averaged over the entire rooting volume. This approach reflects the biological reality that, as a fraction of fine roots cease to function, the soil volume they inhabit can be considered to be non-functional. Thus functional soil volume becomes increasingly porous, and this porosity can be represented in terms of a volumetric power index. Hydrological equilibrium theory (Grier and Running, 1977; Eagleson, 1982; Nemani and Running, 1989; Pierce et al., 1993) implies that climate, functional soil volume, and total leaf area for a community of plants are in equilibrium. By expressing the dynamic characteristic of functional soil volume in terms of changing leaf area measurements, i.e., that soil rooting volume expressed as a function of leaf area by a scaling exponent, the relationship between transpiration and leaf area based on hydrologic equilibrium theory is established (Hatton and Wu, 1995). Using measurements of plant transpiration rate, parameter values relating these variables can be obtained from nonlinear fitting procedures. Four data sets from Wycanna, Qld are use to illustrate the procedure of describing fine root dynamics
doi_str_mv 10.1016/S0304-3800(96)00030-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_16070778</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304380096000300</els_id><sourcerecordid>16070778</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-4c7cb8da40c8fb495e9cd746c26693d17213eb4b6e010a22d3f861262d6be6013</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRS0EEqXwCZW8QrAIjJ3USVYIVbykAgvo2nLsCTVq42CnlPw9pkFsWY1G99x5XEImDC4YMHH5AilkSVoAnJXiHCC2CeyREStynuTAxT4Z_SGH5CiE9wgxXvAReVwEpK6mrduip7Yx-EVVY2i3dUm7VFE02ATb9VS1rXdKL2nnaOg2pqe1bZB65zpq-katrQ7H5KBWq4Anv3VMFrc3r7P7ZP589zC7nic6FdAlmc51VRiVgS7qKiunWGqTZ0JzIcrUsJyzFKusEggMFOcmrQvBuOBGVCiApWNyOsyNJ31sMHRybYPG1Uo16DZBMgE55HkRwekAau9C8FjL1tu18r1kIH_Ck7vw5E8yshRyF56E6JsMvlo5qd68DfJpzsoyYpAV06hfDTrGLz8tehm0xUajsR51J42z_2z4BjYQfqo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>16070778</pqid></control><display><type>article</type><title>Use of power index and two-phase density approach to study fine root dynamics</title><source>ScienceDirect</source><creator>Wu, Hsin-i ; Hatton, Thomas J. ; Stoker, Revin L.</creator><creatorcontrib>Wu, Hsin-i ; Hatton, Thomas J. ; Stoker, Revin L.</creatorcontrib><description>Dynamics of fine roots are analyzed in terms of variation in functional soil volume, i.e., the volume of soil occupied by active fine roots. Functional soil volume decreases with drier climatic conditions while the substantiated rooting density, i.e., rooting density within the functional soil volume, remains constant. Substantiated rooting density differs from mean root density, which is defined as root biomass averaged over the entire rooting volume. This approach reflects the biological reality that, as a fraction of fine roots cease to function, the soil volume they inhabit can be considered to be non-functional. Thus functional soil volume becomes increasingly porous, and this porosity can be represented in terms of a volumetric power index. Hydrological equilibrium theory (Grier and Running, 1977; Eagleson, 1982; Nemani and Running, 1989; Pierce et al., 1993) implies that climate, functional soil volume, and total leaf area for a community of plants are in equilibrium. By expressing the dynamic characteristic of functional soil volume in terms of changing leaf area measurements, i.e., that soil rooting volume expressed as a function of leaf area by a scaling exponent, the relationship between transpiration and leaf area based on hydrologic equilibrium theory is established (Hatton and Wu, 1995). Using measurements of plant transpiration rate, parameter values relating these variables can be obtained from nonlinear fitting procedures. Four data sets from Wycanna, Qld are use to illustrate the procedure of describing fine root dynamics</description><identifier>ISSN: 0304-3800</identifier><identifier>EISSN: 1872-7026</identifier><identifier>DOI: 10.1016/S0304-3800(96)00030-0</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>BALANCE HIDRICO ; BILAN HYDRIQUE ; Fine roots ; Hydrological equilibrium theory ; MODELE ; MODELOS ; PLANT WATER RELATIONS ; Power index ; RACINE ; RAICES ; RELACIONES PLANTA AGUA ; RELATION PLANTE EAU ; ROOT SYSTEMS ; ROOTS ; Scaling ; SISTEMA RADICULAR ; SYSTEME RACINAIRE ; TRANSPIRACION ; TRANSPIRATION ; Tree water use ; WATER BALANCE</subject><ispartof>Ecological modelling, 1997-02, Vol.95 (1), p.87-93</ispartof><rights>1996</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-4c7cb8da40c8fb495e9cd746c26693d17213eb4b6e010a22d3f861262d6be6013</citedby><cites>FETCH-LOGICAL-c360t-4c7cb8da40c8fb495e9cd746c26693d17213eb4b6e010a22d3f861262d6be6013</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0304-3800(96)00030-0$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Wu, Hsin-i</creatorcontrib><creatorcontrib>Hatton, Thomas J.</creatorcontrib><creatorcontrib>Stoker, Revin L.</creatorcontrib><title>Use of power index and two-phase density approach to study fine root dynamics</title><title>Ecological modelling</title><description>Dynamics of fine roots are analyzed in terms of variation in functional soil volume, i.e., the volume of soil occupied by active fine roots. Functional soil volume decreases with drier climatic conditions while the substantiated rooting density, i.e., rooting density within the functional soil volume, remains constant. Substantiated rooting density differs from mean root density, which is defined as root biomass averaged over the entire rooting volume. This approach reflects the biological reality that, as a fraction of fine roots cease to function, the soil volume they inhabit can be considered to be non-functional. Thus functional soil volume becomes increasingly porous, and this porosity can be represented in terms of a volumetric power index. Hydrological equilibrium theory (Grier and Running, 1977; Eagleson, 1982; Nemani and Running, 1989; Pierce et al., 1993) implies that climate, functional soil volume, and total leaf area for a community of plants are in equilibrium. By expressing the dynamic characteristic of functional soil volume in terms of changing leaf area measurements, i.e., that soil rooting volume expressed as a function of leaf area by a scaling exponent, the relationship between transpiration and leaf area based on hydrologic equilibrium theory is established (Hatton and Wu, 1995). Using measurements of plant transpiration rate, parameter values relating these variables can be obtained from nonlinear fitting procedures. Four data sets from Wycanna, Qld are use to illustrate the procedure of describing fine root dynamics</description><subject>BALANCE HIDRICO</subject><subject>BILAN HYDRIQUE</subject><subject>Fine roots</subject><subject>Hydrological equilibrium theory</subject><subject>MODELE</subject><subject>MODELOS</subject><subject>PLANT WATER RELATIONS</subject><subject>Power index</subject><subject>RACINE</subject><subject>RAICES</subject><subject>RELACIONES PLANTA AGUA</subject><subject>RELATION PLANTE EAU</subject><subject>ROOT SYSTEMS</subject><subject>ROOTS</subject><subject>Scaling</subject><subject>SISTEMA RADICULAR</subject><subject>SYSTEME RACINAIRE</subject><subject>TRANSPIRACION</subject><subject>TRANSPIRATION</subject><subject>Tree water use</subject><subject>WATER BALANCE</subject><issn>0304-3800</issn><issn>1872-7026</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><recordid>eNqFkMtOwzAQRS0EEqXwCZW8QrAIjJ3USVYIVbykAgvo2nLsCTVq42CnlPw9pkFsWY1G99x5XEImDC4YMHH5AilkSVoAnJXiHCC2CeyREStynuTAxT4Z_SGH5CiE9wgxXvAReVwEpK6mrduip7Yx-EVVY2i3dUm7VFE02ATb9VS1rXdKL2nnaOg2pqe1bZB65zpq-katrQ7H5KBWq4Anv3VMFrc3r7P7ZP589zC7nic6FdAlmc51VRiVgS7qKiunWGqTZ0JzIcrUsJyzFKusEggMFOcmrQvBuOBGVCiApWNyOsyNJ31sMHRybYPG1Uo16DZBMgE55HkRwekAau9C8FjL1tu18r1kIH_Ck7vw5E8yshRyF56E6JsMvlo5qd68DfJpzsoyYpAV06hfDTrGLz8tehm0xUajsR51J42z_2z4BjYQfqo</recordid><startdate>19970201</startdate><enddate>19970201</enddate><creator>Wu, Hsin-i</creator><creator>Hatton, Thomas J.</creator><creator>Stoker, Revin L.</creator><general>Elsevier B.V</general><scope>FBQ</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>C1K</scope></search><sort><creationdate>19970201</creationdate><title>Use of power index and two-phase density approach to study fine root dynamics</title><author>Wu, Hsin-i ; Hatton, Thomas J. ; Stoker, Revin L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-4c7cb8da40c8fb495e9cd746c26693d17213eb4b6e010a22d3f861262d6be6013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>BALANCE HIDRICO</topic><topic>BILAN HYDRIQUE</topic><topic>Fine roots</topic><topic>Hydrological equilibrium theory</topic><topic>MODELE</topic><topic>MODELOS</topic><topic>PLANT WATER RELATIONS</topic><topic>Power index</topic><topic>RACINE</topic><topic>RAICES</topic><topic>RELACIONES PLANTA AGUA</topic><topic>RELATION PLANTE EAU</topic><topic>ROOT SYSTEMS</topic><topic>ROOTS</topic><topic>Scaling</topic><topic>SISTEMA RADICULAR</topic><topic>SYSTEME RACINAIRE</topic><topic>TRANSPIRACION</topic><topic>TRANSPIRATION</topic><topic>Tree water use</topic><topic>WATER BALANCE</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Hsin-i</creatorcontrib><creatorcontrib>Hatton, Thomas J.</creatorcontrib><creatorcontrib>Stoker, Revin L.</creatorcontrib><collection>AGRIS</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Ecological modelling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Hsin-i</au><au>Hatton, Thomas J.</au><au>Stoker, Revin L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Use of power index and two-phase density approach to study fine root dynamics</atitle><jtitle>Ecological modelling</jtitle><date>1997-02-01</date><risdate>1997</risdate><volume>95</volume><issue>1</issue><spage>87</spage><epage>93</epage><pages>87-93</pages><issn>0304-3800</issn><eissn>1872-7026</eissn><abstract>Dynamics of fine roots are analyzed in terms of variation in functional soil volume, i.e., the volume of soil occupied by active fine roots. Functional soil volume decreases with drier climatic conditions while the substantiated rooting density, i.e., rooting density within the functional soil volume, remains constant. Substantiated rooting density differs from mean root density, which is defined as root biomass averaged over the entire rooting volume. This approach reflects the biological reality that, as a fraction of fine roots cease to function, the soil volume they inhabit can be considered to be non-functional. Thus functional soil volume becomes increasingly porous, and this porosity can be represented in terms of a volumetric power index. Hydrological equilibrium theory (Grier and Running, 1977; Eagleson, 1982; Nemani and Running, 1989; Pierce et al., 1993) implies that climate, functional soil volume, and total leaf area for a community of plants are in equilibrium. By expressing the dynamic characteristic of functional soil volume in terms of changing leaf area measurements, i.e., that soil rooting volume expressed as a function of leaf area by a scaling exponent, the relationship between transpiration and leaf area based on hydrologic equilibrium theory is established (Hatton and Wu, 1995). Using measurements of plant transpiration rate, parameter values relating these variables can be obtained from nonlinear fitting procedures. Four data sets from Wycanna, Qld are use to illustrate the procedure of describing fine root dynamics</abstract><pub>Elsevier B.V</pub><doi>10.1016/S0304-3800(96)00030-0</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0304-3800
ispartof Ecological modelling, 1997-02, Vol.95 (1), p.87-93
issn 0304-3800
1872-7026
language eng
recordid cdi_proquest_miscellaneous_16070778
source ScienceDirect
subjects BALANCE HIDRICO
BILAN HYDRIQUE
Fine roots
Hydrological equilibrium theory
MODELE
MODELOS
PLANT WATER RELATIONS
Power index
RACINE
RAICES
RELACIONES PLANTA AGUA
RELATION PLANTE EAU
ROOT SYSTEMS
ROOTS
Scaling
SISTEMA RADICULAR
SYSTEME RACINAIRE
TRANSPIRACION
TRANSPIRATION
Tree water use
WATER BALANCE
title Use of power index and two-phase density approach to study fine root dynamics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T05%3A51%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Use%20of%20power%20index%20and%20two-phase%20density%20approach%20to%20study%20fine%20root%20dynamics&rft.jtitle=Ecological%20modelling&rft.au=Wu,%20Hsin-i&rft.date=1997-02-01&rft.volume=95&rft.issue=1&rft.spage=87&rft.epage=93&rft.pages=87-93&rft.issn=0304-3800&rft.eissn=1872-7026&rft_id=info:doi/10.1016/S0304-3800(96)00030-0&rft_dat=%3Cproquest_cross%3E16070778%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=16070778&rft_id=info:pmid/&rft_els_id=S0304380096000300&rfr_iscdi=true