POTENTIAL EFFECTS OF CLIMATE CHANGE ON AQUATIC ECOSYSTEMS OF THE GREAT PLAINS OF NORTH AMERICA

The Great Plains landscape is less topographically complex than most other regions within North America, but diverse aquatic ecosystems, such as playas, pothole lakes, ox‐bow lakes, springs, groundwater aquifers, intermittent and ephemeral streams, as well as large rivers and wetlands, are highly dy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Hydrological processes 1997-06, Vol.11 (8), p.993-1021
Hauptverfasser: COVICH, A. P., FRITZ, S. C., LAMB, P. J., MARZOLF, R. D., MATTHEWS, W. J., POIANI, K. A., PREPAS, E. E., RICHMAN, M. B., WINTER, T. C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1021
container_issue 8
container_start_page 993
container_title Hydrological processes
container_volume 11
creator COVICH, A. P.
FRITZ, S. C.
LAMB, P. J.
MARZOLF, R. D.
MATTHEWS, W. J.
POIANI, K. A.
PREPAS, E. E.
RICHMAN, M. B.
WINTER, T. C.
description The Great Plains landscape is less topographically complex than most other regions within North America, but diverse aquatic ecosystems, such as playas, pothole lakes, ox‐bow lakes, springs, groundwater aquifers, intermittent and ephemeral streams, as well as large rivers and wetlands, are highly dynamic and responsive to extreme climatic fluctuations. We review the evidence for climatic change that demonstrates the historical importance of extremes in north–south differences in summer temperatures and east–west differences in aridity across four large subregions. These physical driving forces alter density stratification, deoxygenation, decomposition and salinity. Biotic community composition and associated ecosystem processes of productivity and nutrient cycling respond rapidly to these climatically driven dynamics. Ecosystem processes also respond to cultural effects such as dams and diversions of water for irrigation, waste dilution and urban demands for drinking water and industrial uses. Distinguishing climatic from cultural effects in future models of aquatic ecosystem functioning will require more refinement in both climatic and economic forecasting. There is a need, for example, to predict how long‐term climatic forecasts (based on both ENSO and global warming simulations) relate to the permanence and productivity of shallow water ecosystems. Aquatic ecologists, hydrologists, climatologists and geographers have much to discuss regarding the synthesis of available data and the design of future interdisciplinary research. © 1997 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/(SICI)1099-1085(19970630)11:8<993::AID-HYP515>3.0.CO;2-N
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_16066152</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>14467923</sourcerecordid><originalsourceid>FETCH-LOGICAL-a4695-6558fac98d37a261de0f99539f5b27f9c5eba32d4d756a71344869f1de3975e23</originalsourceid><addsrcrecordid>eNqNkU1v00AQhi0EEqHwH3xAqD047Hq9XwEhVtt1bMmxQ-wK2gOjrWNLLm5TvK2g_x6nCbmABKeVZp95ZjSv533EaIoRCt8el6lOTzCSMsBI0GMsJUeMoBOMZ-K9lGQ2U-lpkJwvKaYfyBRNdfEuDPIn3uTQ9NSbICFowJDgz70Xzl0hhCIk0MT7uiwqk1epynwTx0ZXpV_Evs7ShaqMrxOVz41f5L76dKaqVPtGF-V5WZnFI1clxp-vjKr8ZabS_LGWF6sq8dXCrFKtXnrPWtu75tX-PfLOYlPpJMiK-fidBTZiclyMUtHaWoo14TZkeN2gVkpKZEsvQ97KmjaXloTraM0psxyTKBJMtiNHJKdNSI68Nzvv7bD5ft-4O7juXN30vb1pNvcOMEOMYfofYBQxLkMygl92YD1snBuaFm6H7toOD4ARbJMB2CYD2yPD9sjwOxnAGASMyQCMycAuGSCAQBcQQj6qX-93sK62fTvYm7pzB38oCA8JG7GLHfaj65uHP8b_c_pfh-8rozzYyTt31_w8yO3wDRgnnMLnfA4kLvXpBYthQX4BYUS0Gg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>14467923</pqid></control><display><type>article</type><title>POTENTIAL EFFECTS OF CLIMATE CHANGE ON AQUATIC ECOSYSTEMS OF THE GREAT PLAINS OF NORTH AMERICA</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>COVICH, A. P. ; FRITZ, S. C. ; LAMB, P. J. ; MARZOLF, R. D. ; MATTHEWS, W. J. ; POIANI, K. A. ; PREPAS, E. E. ; RICHMAN, M. B. ; WINTER, T. C.</creator><contributor>Cushing, CE</contributor><creatorcontrib>COVICH, A. P. ; FRITZ, S. C. ; LAMB, P. J. ; MARZOLF, R. D. ; MATTHEWS, W. J. ; POIANI, K. A. ; PREPAS, E. E. ; RICHMAN, M. B. ; WINTER, T. C. ; Cushing, CE</creatorcontrib><description>The Great Plains landscape is less topographically complex than most other regions within North America, but diverse aquatic ecosystems, such as playas, pothole lakes, ox‐bow lakes, springs, groundwater aquifers, intermittent and ephemeral streams, as well as large rivers and wetlands, are highly dynamic and responsive to extreme climatic fluctuations. We review the evidence for climatic change that demonstrates the historical importance of extremes in north–south differences in summer temperatures and east–west differences in aridity across four large subregions. These physical driving forces alter density stratification, deoxygenation, decomposition and salinity. Biotic community composition and associated ecosystem processes of productivity and nutrient cycling respond rapidly to these climatically driven dynamics. Ecosystem processes also respond to cultural effects such as dams and diversions of water for irrigation, waste dilution and urban demands for drinking water and industrial uses. Distinguishing climatic from cultural effects in future models of aquatic ecosystem functioning will require more refinement in both climatic and economic forecasting. There is a need, for example, to predict how long‐term climatic forecasts (based on both ENSO and global warming simulations) relate to the permanence and productivity of shallow water ecosystems. Aquatic ecologists, hydrologists, climatologists and geographers have much to discuss regarding the synthesis of available data and the design of future interdisciplinary research. © 1997 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 0885-6087</identifier><identifier>EISSN: 1099-1085</identifier><identifier>DOI: 10.1002/(SICI)1099-1085(19970630)11:8&lt;993::AID-HYP515&gt;3.0.CO;2-N</identifier><identifier>CODEN: HYPRE3</identifier><language>eng</language><publisher>West Sussex: John Wiley &amp; Sons, Ltd</publisher><subject>aquatic ecosystems ; climate change ; drought ; Earth sciences ; Earth, ocean, space ; Engineering and environment geology. Geothermics ; Exact sciences and technology ; floods ; Freshwater ; Hydrology ; Hydrology. Hydrogeology ; lake history ; Pollution, environment geology</subject><ispartof>Hydrological processes, 1997-06, Vol.11 (8), p.993-1021</ispartof><rights>Copyright © 1997 John Wiley &amp; Sons, Ltd.</rights><rights>1997 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a4695-6558fac98d37a261de0f99539f5b27f9c5eba32d4d756a71344869f1de3975e23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F%28SICI%291099-1085%2819970630%2911%3A8%3C993%3A%3AAID-HYP515%3E3.0.CO%3B2-N$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F%28SICI%291099-1085%2819970630%2911%3A8%3C993%3A%3AAID-HYP515%3E3.0.CO%3B2-N$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,1411,23909,23910,25118,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=2837236$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Cushing, CE</contributor><creatorcontrib>COVICH, A. P.</creatorcontrib><creatorcontrib>FRITZ, S. C.</creatorcontrib><creatorcontrib>LAMB, P. J.</creatorcontrib><creatorcontrib>MARZOLF, R. D.</creatorcontrib><creatorcontrib>MATTHEWS, W. J.</creatorcontrib><creatorcontrib>POIANI, K. A.</creatorcontrib><creatorcontrib>PREPAS, E. E.</creatorcontrib><creatorcontrib>RICHMAN, M. B.</creatorcontrib><creatorcontrib>WINTER, T. C.</creatorcontrib><title>POTENTIAL EFFECTS OF CLIMATE CHANGE ON AQUATIC ECOSYSTEMS OF THE GREAT PLAINS OF NORTH AMERICA</title><title>Hydrological processes</title><addtitle>Hydrol. Process</addtitle><description>The Great Plains landscape is less topographically complex than most other regions within North America, but diverse aquatic ecosystems, such as playas, pothole lakes, ox‐bow lakes, springs, groundwater aquifers, intermittent and ephemeral streams, as well as large rivers and wetlands, are highly dynamic and responsive to extreme climatic fluctuations. We review the evidence for climatic change that demonstrates the historical importance of extremes in north–south differences in summer temperatures and east–west differences in aridity across four large subregions. These physical driving forces alter density stratification, deoxygenation, decomposition and salinity. Biotic community composition and associated ecosystem processes of productivity and nutrient cycling respond rapidly to these climatically driven dynamics. Ecosystem processes also respond to cultural effects such as dams and diversions of water for irrigation, waste dilution and urban demands for drinking water and industrial uses. Distinguishing climatic from cultural effects in future models of aquatic ecosystem functioning will require more refinement in both climatic and economic forecasting. There is a need, for example, to predict how long‐term climatic forecasts (based on both ENSO and global warming simulations) relate to the permanence and productivity of shallow water ecosystems. Aquatic ecologists, hydrologists, climatologists and geographers have much to discuss regarding the synthesis of available data and the design of future interdisciplinary research. © 1997 John Wiley &amp; Sons, Ltd.</description><subject>aquatic ecosystems</subject><subject>climate change</subject><subject>drought</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Engineering and environment geology. Geothermics</subject><subject>Exact sciences and technology</subject><subject>floods</subject><subject>Freshwater</subject><subject>Hydrology</subject><subject>Hydrology. Hydrogeology</subject><subject>lake history</subject><subject>Pollution, environment geology</subject><issn>0885-6087</issn><issn>1099-1085</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><recordid>eNqNkU1v00AQhi0EEqHwH3xAqD047Hq9XwEhVtt1bMmxQ-wK2gOjrWNLLm5TvK2g_x6nCbmABKeVZp95ZjSv533EaIoRCt8el6lOTzCSMsBI0GMsJUeMoBOMZ-K9lGQ2U-lpkJwvKaYfyBRNdfEuDPIn3uTQ9NSbICFowJDgz70Xzl0hhCIk0MT7uiwqk1epynwTx0ZXpV_Evs7ShaqMrxOVz41f5L76dKaqVPtGF-V5WZnFI1clxp-vjKr8ZabS_LGWF6sq8dXCrFKtXnrPWtu75tX-PfLOYlPpJMiK-fidBTZiclyMUtHaWoo14TZkeN2gVkpKZEsvQ97KmjaXloTraM0psxyTKBJMtiNHJKdNSI68Nzvv7bD5ft-4O7juXN30vb1pNvcOMEOMYfofYBQxLkMygl92YD1snBuaFm6H7toOD4ARbJMB2CYD2yPD9sjwOxnAGASMyQCMycAuGSCAQBcQQj6qX-93sK62fTvYm7pzB38oCA8JG7GLHfaj65uHP8b_c_pfh-8rozzYyTt31_w8yO3wDRgnnMLnfA4kLvXpBYthQX4BYUS0Gg</recordid><startdate>19970630</startdate><enddate>19970630</enddate><creator>COVICH, A. P.</creator><creator>FRITZ, S. C.</creator><creator>LAMB, P. J.</creator><creator>MARZOLF, R. D.</creator><creator>MATTHEWS, W. J.</creator><creator>POIANI, K. A.</creator><creator>PREPAS, E. E.</creator><creator>RICHMAN, M. B.</creator><creator>WINTER, T. C.</creator><general>John Wiley &amp; Sons, Ltd</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope><scope>7TV</scope><scope>7UA</scope><scope>F1W</scope><scope>H95</scope><scope>H97</scope><scope>L.G</scope></search><sort><creationdate>19970630</creationdate><title>POTENTIAL EFFECTS OF CLIMATE CHANGE ON AQUATIC ECOSYSTEMS OF THE GREAT PLAINS OF NORTH AMERICA</title><author>COVICH, A. P. ; FRITZ, S. C. ; LAMB, P. J. ; MARZOLF, R. D. ; MATTHEWS, W. J. ; POIANI, K. A. ; PREPAS, E. E. ; RICHMAN, M. B. ; WINTER, T. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a4695-6558fac98d37a261de0f99539f5b27f9c5eba32d4d756a71344869f1de3975e23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>aquatic ecosystems</topic><topic>climate change</topic><topic>drought</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Engineering and environment geology. Geothermics</topic><topic>Exact sciences and technology</topic><topic>floods</topic><topic>Freshwater</topic><topic>Hydrology</topic><topic>Hydrology. Hydrogeology</topic><topic>lake history</topic><topic>Pollution, environment geology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>COVICH, A. P.</creatorcontrib><creatorcontrib>FRITZ, S. C.</creatorcontrib><creatorcontrib>LAMB, P. J.</creatorcontrib><creatorcontrib>MARZOLF, R. D.</creatorcontrib><creatorcontrib>MATTHEWS, W. J.</creatorcontrib><creatorcontrib>POIANI, K. A.</creatorcontrib><creatorcontrib>PREPAS, E. E.</creatorcontrib><creatorcontrib>RICHMAN, M. B.</creatorcontrib><creatorcontrib>WINTER, T. C.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>Pollution Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Hydrological processes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>COVICH, A. P.</au><au>FRITZ, S. C.</au><au>LAMB, P. J.</au><au>MARZOLF, R. D.</au><au>MATTHEWS, W. J.</au><au>POIANI, K. A.</au><au>PREPAS, E. E.</au><au>RICHMAN, M. B.</au><au>WINTER, T. C.</au><au>Cushing, CE</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>POTENTIAL EFFECTS OF CLIMATE CHANGE ON AQUATIC ECOSYSTEMS OF THE GREAT PLAINS OF NORTH AMERICA</atitle><jtitle>Hydrological processes</jtitle><addtitle>Hydrol. Process</addtitle><date>1997-06-30</date><risdate>1997</risdate><volume>11</volume><issue>8</issue><spage>993</spage><epage>1021</epage><pages>993-1021</pages><issn>0885-6087</issn><eissn>1099-1085</eissn><coden>HYPRE3</coden><abstract>The Great Plains landscape is less topographically complex than most other regions within North America, but diverse aquatic ecosystems, such as playas, pothole lakes, ox‐bow lakes, springs, groundwater aquifers, intermittent and ephemeral streams, as well as large rivers and wetlands, are highly dynamic and responsive to extreme climatic fluctuations. We review the evidence for climatic change that demonstrates the historical importance of extremes in north–south differences in summer temperatures and east–west differences in aridity across four large subregions. These physical driving forces alter density stratification, deoxygenation, decomposition and salinity. Biotic community composition and associated ecosystem processes of productivity and nutrient cycling respond rapidly to these climatically driven dynamics. Ecosystem processes also respond to cultural effects such as dams and diversions of water for irrigation, waste dilution and urban demands for drinking water and industrial uses. Distinguishing climatic from cultural effects in future models of aquatic ecosystem functioning will require more refinement in both climatic and economic forecasting. There is a need, for example, to predict how long‐term climatic forecasts (based on both ENSO and global warming simulations) relate to the permanence and productivity of shallow water ecosystems. Aquatic ecologists, hydrologists, climatologists and geographers have much to discuss regarding the synthesis of available data and the design of future interdisciplinary research. © 1997 John Wiley &amp; Sons, Ltd.</abstract><cop>West Sussex</cop><pub>John Wiley &amp; Sons, Ltd</pub><doi>10.1002/(SICI)1099-1085(19970630)11:8&lt;993::AID-HYP515&gt;3.0.CO;2-N</doi><tpages>29</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0885-6087
ispartof Hydrological processes, 1997-06, Vol.11 (8), p.993-1021
issn 0885-6087
1099-1085
language eng
recordid cdi_proquest_miscellaneous_16066152
source Wiley Online Library Journals Frontfile Complete
subjects aquatic ecosystems
climate change
drought
Earth sciences
Earth, ocean, space
Engineering and environment geology. Geothermics
Exact sciences and technology
floods
Freshwater
Hydrology
Hydrology. Hydrogeology
lake history
Pollution, environment geology
title POTENTIAL EFFECTS OF CLIMATE CHANGE ON AQUATIC ECOSYSTEMS OF THE GREAT PLAINS OF NORTH AMERICA
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T21%3A52%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=POTENTIAL%20EFFECTS%20OF%20CLIMATE%20CHANGE%20ON%20AQUATIC%20ECOSYSTEMS%20OF%20THE%20GREAT%20PLAINS%20OF%20NORTH%20AMERICA&rft.jtitle=Hydrological%20processes&rft.au=COVICH,%20A.%20P.&rft.date=1997-06-30&rft.volume=11&rft.issue=8&rft.spage=993&rft.epage=1021&rft.pages=993-1021&rft.issn=0885-6087&rft.eissn=1099-1085&rft.coden=HYPRE3&rft_id=info:doi/10.1002/(SICI)1099-1085(19970630)11:8%3C993::AID-HYP515%3E3.0.CO;2-N&rft_dat=%3Cproquest_cross%3E14467923%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=14467923&rft_id=info:pmid/&rfr_iscdi=true