Risk assessment methodology for karst aquifers : (1) Estimating karst conduit-flow parameters
Quantitative ground-water tracing of conduit-dominated karst aquifers allows for reliable and practical interpretation of karst ground-water flow. Insights into the hydraulic geometry of the karst aquifer may be acquired that otherwise could not be obtained by such conventional methods as potentiome...
Gespeichert in:
Veröffentlicht in: | Environmental monitoring and assessment 1997-08, Vol.47 (1), p.1-21 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 21 |
---|---|
container_issue | 1 |
container_start_page | 1 |
container_title | Environmental monitoring and assessment |
container_volume | 47 |
creator | FIELD, M. S NASH, S. G |
description | Quantitative ground-water tracing of conduit-dominated karst aquifers allows for reliable and practical interpretation of karst ground-water flow. Insights into the hydraulic geometry of the karst aquifer may be acquired that otherwise could not be obtained by such conventional methods as potentiometric-surface mapping and aquifer testing. Contamination of karst aquifers requires that a comprehensive tracer budget be performed so that karst conduit hydraulic-flow and geometric parameters be obtained. Acquisition of these parameters is necessary for estimating contaminant fate-and-transport. A FORTRAN computer program for estimating total tracer recovery from tracer-breakthrough curves is proposed as a standard method. Estimated hydraulic-flow parameters include mean residence time, mean flow velocity, longitudinal dispersivity, Peclet number, Reynolds number, and Froude number. Estimated geometric parameters include karst conduit sinuous distance, conduit volume, cross-sectional area, diameter, and hydraulic depth. These parameters may be used to (1) develop structural models of the aquifer, (2) improve aquifer resource management, (3) improve ground-water monitoring systems design, (4) improve aquifer remediation, and (5) assess contaminant fate-and-transport. A companion paper demonstrates the use of these hydraulic-flow and geometric parameters in a surface-water model for estimating contaminant fate-and-transport in a karst conduit. Two ground-water tracing studies demonstrate the utility of this program for reliable estimation of necessary karst conduit hydraulic-flow and geometric parameters.[PUBLICATION ABSTRACT] |
doi_str_mv | 10.1023/A:1005753919403 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_miscellaneous_16025600</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2140971861</sourcerecordid><originalsourceid>FETCH-LOGICAL-c232t-e4b33ffd23507b8d08bb317df8a8f77689c0d31bf47c958e0dc0e946cdf8ecaa3</originalsourceid><addsrcrecordid>eNqF0E1LAzEQBuAgCtbq2WsQET2sTjZfm95KqR9QEESPsmSzSd12u2mTLNJ_74I9efE0h3l4eWcQuiRwTyCnD9MJAeCSU0UUA3qERoRLmuWKq2M0AiJkJqhQp-gsxhUAKMnUCH2-NXGNdYw2xo3tEt7Y9OVr3_rlHjsf8FqHmLDe9Y2zIeIJviV3eB5Ts9Gp6ZaHvfFd3Tcpc63_xlsd9BAz8HN04nQb7cVhjtHH4_x99pwtXp9eZtNFZnKap8yyilLn6pxykFVRQ1FVlMjaFbpwUopCGagpqRyTRvHCQm3AKibMIKzRmo7RzW_uNvhdb2MqN000tm11Z30fSyIg5wLgf8iYYELlA7z6A1e-D91wRCk5YYQpTgZ0fUA6Gt26oDvTxHIbhueEfZnLobso6A-t4323</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>751414951</pqid></control><display><type>article</type><title>Risk assessment methodology for karst aquifers : (1) Estimating karst conduit-flow parameters</title><source>SpringerNature Journals</source><creator>FIELD, M. S ; NASH, S. G</creator><creatorcontrib>FIELD, M. S ; NASH, S. G</creatorcontrib><description>Quantitative ground-water tracing of conduit-dominated karst aquifers allows for reliable and practical interpretation of karst ground-water flow. Insights into the hydraulic geometry of the karst aquifer may be acquired that otherwise could not be obtained by such conventional methods as potentiometric-surface mapping and aquifer testing. Contamination of karst aquifers requires that a comprehensive tracer budget be performed so that karst conduit hydraulic-flow and geometric parameters be obtained. Acquisition of these parameters is necessary for estimating contaminant fate-and-transport. A FORTRAN computer program for estimating total tracer recovery from tracer-breakthrough curves is proposed as a standard method. Estimated hydraulic-flow parameters include mean residence time, mean flow velocity, longitudinal dispersivity, Peclet number, Reynolds number, and Froude number. Estimated geometric parameters include karst conduit sinuous distance, conduit volume, cross-sectional area, diameter, and hydraulic depth. These parameters may be used to (1) develop structural models of the aquifer, (2) improve aquifer resource management, (3) improve ground-water monitoring systems design, (4) improve aquifer remediation, and (5) assess contaminant fate-and-transport. A companion paper demonstrates the use of these hydraulic-flow and geometric parameters in a surface-water model for estimating contaminant fate-and-transport in a karst conduit. Two ground-water tracing studies demonstrate the utility of this program for reliable estimation of necessary karst conduit hydraulic-flow and geometric parameters.[PUBLICATION ABSTRACT]</description><identifier>ISSN: 0167-6369</identifier><identifier>EISSN: 1573-2959</identifier><identifier>DOI: 10.1023/A:1005753919403</identifier><identifier>CODEN: EMASDH</identifier><language>eng</language><publisher>Dordrect: Springer</publisher><subject>Aquifer testing ; Aquifers ; Contaminants ; Depth perception ; Earth sciences ; Earth, ocean, space ; Engineering and environment geology. Geothermics ; Environmental monitoring ; Exact sciences and technology ; Flow velocity ; Froude number ; Groundwater ; Groundwater flow ; Hydraulic geometry ; Hydraulics ; Hydrogeology ; Hydrology. Hydrogeology ; Karst ; Monitoring systems ; Pollution, environment geology ; Resource management ; Reynolds number ; Risk assessment ; Structural models ; Studies ; Surface water ; Water flow ; Water monitoring</subject><ispartof>Environmental monitoring and assessment, 1997-08, Vol.47 (1), p.1-21</ispartof><rights>1997 INIST-CNRS</rights><rights>Kluwer Academic Publishers 1997</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c232t-e4b33ffd23507b8d08bb317df8a8f77689c0d31bf47c958e0dc0e946cdf8ecaa3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=2777668$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>FIELD, M. S</creatorcontrib><creatorcontrib>NASH, S. G</creatorcontrib><title>Risk assessment methodology for karst aquifers : (1) Estimating karst conduit-flow parameters</title><title>Environmental monitoring and assessment</title><description>Quantitative ground-water tracing of conduit-dominated karst aquifers allows for reliable and practical interpretation of karst ground-water flow. Insights into the hydraulic geometry of the karst aquifer may be acquired that otherwise could not be obtained by such conventional methods as potentiometric-surface mapping and aquifer testing. Contamination of karst aquifers requires that a comprehensive tracer budget be performed so that karst conduit hydraulic-flow and geometric parameters be obtained. Acquisition of these parameters is necessary for estimating contaminant fate-and-transport. A FORTRAN computer program for estimating total tracer recovery from tracer-breakthrough curves is proposed as a standard method. Estimated hydraulic-flow parameters include mean residence time, mean flow velocity, longitudinal dispersivity, Peclet number, Reynolds number, and Froude number. Estimated geometric parameters include karst conduit sinuous distance, conduit volume, cross-sectional area, diameter, and hydraulic depth. These parameters may be used to (1) develop structural models of the aquifer, (2) improve aquifer resource management, (3) improve ground-water monitoring systems design, (4) improve aquifer remediation, and (5) assess contaminant fate-and-transport. A companion paper demonstrates the use of these hydraulic-flow and geometric parameters in a surface-water model for estimating contaminant fate-and-transport in a karst conduit. Two ground-water tracing studies demonstrate the utility of this program for reliable estimation of necessary karst conduit hydraulic-flow and geometric parameters.[PUBLICATION ABSTRACT]</description><subject>Aquifer testing</subject><subject>Aquifers</subject><subject>Contaminants</subject><subject>Depth perception</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Engineering and environment geology. Geothermics</subject><subject>Environmental monitoring</subject><subject>Exact sciences and technology</subject><subject>Flow velocity</subject><subject>Froude number</subject><subject>Groundwater</subject><subject>Groundwater flow</subject><subject>Hydraulic geometry</subject><subject>Hydraulics</subject><subject>Hydrogeology</subject><subject>Hydrology. Hydrogeology</subject><subject>Karst</subject><subject>Monitoring systems</subject><subject>Pollution, environment geology</subject><subject>Resource management</subject><subject>Reynolds number</subject><subject>Risk assessment</subject><subject>Structural models</subject><subject>Studies</subject><subject>Surface water</subject><subject>Water flow</subject><subject>Water monitoring</subject><issn>0167-6369</issn><issn>1573-2959</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqF0E1LAzEQBuAgCtbq2WsQET2sTjZfm95KqR9QEESPsmSzSd12u2mTLNJ_74I9efE0h3l4eWcQuiRwTyCnD9MJAeCSU0UUA3qERoRLmuWKq2M0AiJkJqhQp-gsxhUAKMnUCH2-NXGNdYw2xo3tEt7Y9OVr3_rlHjsf8FqHmLDe9Y2zIeIJviV3eB5Ts9Gp6ZaHvfFd3Tcpc63_xlsd9BAz8HN04nQb7cVhjtHH4_x99pwtXp9eZtNFZnKap8yyilLn6pxykFVRQ1FVlMjaFbpwUopCGagpqRyTRvHCQm3AKibMIKzRmo7RzW_uNvhdb2MqN000tm11Z30fSyIg5wLgf8iYYELlA7z6A1e-D91wRCk5YYQpTgZ0fUA6Gt26oDvTxHIbhueEfZnLobso6A-t4323</recordid><startdate>199708</startdate><enddate>199708</enddate><creator>FIELD, M. S</creator><creator>NASH, S. G</creator><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>3V.</scope><scope>7QH</scope><scope>7QL</scope><scope>7SN</scope><scope>7ST</scope><scope>7T7</scope><scope>7TG</scope><scope>7TN</scope><scope>7U7</scope><scope>7UA</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H97</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>KL.</scope><scope>L.-</scope><scope>L.G</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>P64</scope><scope>PATMY</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope></search><sort><creationdate>199708</creationdate><title>Risk assessment methodology for karst aquifers : (1) Estimating karst conduit-flow parameters</title><author>FIELD, M. S ; NASH, S. G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c232t-e4b33ffd23507b8d08bb317df8a8f77689c0d31bf47c958e0dc0e946cdf8ecaa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Aquifer testing</topic><topic>Aquifers</topic><topic>Contaminants</topic><topic>Depth perception</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Engineering and environment geology. Geothermics</topic><topic>Environmental monitoring</topic><topic>Exact sciences and technology</topic><topic>Flow velocity</topic><topic>Froude number</topic><topic>Groundwater</topic><topic>Groundwater flow</topic><topic>Hydraulic geometry</topic><topic>Hydraulics</topic><topic>Hydrogeology</topic><topic>Hydrology. Hydrogeology</topic><topic>Karst</topic><topic>Monitoring systems</topic><topic>Pollution, environment geology</topic><topic>Resource management</topic><topic>Reynolds number</topic><topic>Risk assessment</topic><topic>Structural models</topic><topic>Studies</topic><topic>Surface water</topic><topic>Water flow</topic><topic>Water monitoring</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>FIELD, M. S</creatorcontrib><creatorcontrib>NASH, S. G</creatorcontrib><collection>Pascal-Francis</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ABI/INFORM Global</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><jtitle>Environmental monitoring and assessment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>FIELD, M. S</au><au>NASH, S. G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Risk assessment methodology for karst aquifers : (1) Estimating karst conduit-flow parameters</atitle><jtitle>Environmental monitoring and assessment</jtitle><date>1997-08</date><risdate>1997</risdate><volume>47</volume><issue>1</issue><spage>1</spage><epage>21</epage><pages>1-21</pages><issn>0167-6369</issn><eissn>1573-2959</eissn><coden>EMASDH</coden><abstract>Quantitative ground-water tracing of conduit-dominated karst aquifers allows for reliable and practical interpretation of karst ground-water flow. Insights into the hydraulic geometry of the karst aquifer may be acquired that otherwise could not be obtained by such conventional methods as potentiometric-surface mapping and aquifer testing. Contamination of karst aquifers requires that a comprehensive tracer budget be performed so that karst conduit hydraulic-flow and geometric parameters be obtained. Acquisition of these parameters is necessary for estimating contaminant fate-and-transport. A FORTRAN computer program for estimating total tracer recovery from tracer-breakthrough curves is proposed as a standard method. Estimated hydraulic-flow parameters include mean residence time, mean flow velocity, longitudinal dispersivity, Peclet number, Reynolds number, and Froude number. Estimated geometric parameters include karst conduit sinuous distance, conduit volume, cross-sectional area, diameter, and hydraulic depth. These parameters may be used to (1) develop structural models of the aquifer, (2) improve aquifer resource management, (3) improve ground-water monitoring systems design, (4) improve aquifer remediation, and (5) assess contaminant fate-and-transport. A companion paper demonstrates the use of these hydraulic-flow and geometric parameters in a surface-water model for estimating contaminant fate-and-transport in a karst conduit. Two ground-water tracing studies demonstrate the utility of this program for reliable estimation of necessary karst conduit hydraulic-flow and geometric parameters.[PUBLICATION ABSTRACT]</abstract><cop>Dordrect</cop><pub>Springer</pub><doi>10.1023/A:1005753919403</doi><tpages>21</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0167-6369 |
ispartof | Environmental monitoring and assessment, 1997-08, Vol.47 (1), p.1-21 |
issn | 0167-6369 1573-2959 |
language | eng |
recordid | cdi_proquest_miscellaneous_16025600 |
source | SpringerNature Journals |
subjects | Aquifer testing Aquifers Contaminants Depth perception Earth sciences Earth, ocean, space Engineering and environment geology. Geothermics Environmental monitoring Exact sciences and technology Flow velocity Froude number Groundwater Groundwater flow Hydraulic geometry Hydraulics Hydrogeology Hydrology. Hydrogeology Karst Monitoring systems Pollution, environment geology Resource management Reynolds number Risk assessment Structural models Studies Surface water Water flow Water monitoring |
title | Risk assessment methodology for karst aquifers : (1) Estimating karst conduit-flow parameters |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T04%3A17%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Risk%20assessment%20methodology%20for%20karst%20aquifers%20:%20(1)%20Estimating%20karst%20conduit-flow%20parameters&rft.jtitle=Environmental%20monitoring%20and%20assessment&rft.au=FIELD,%20M.%20S&rft.date=1997-08&rft.volume=47&rft.issue=1&rft.spage=1&rft.epage=21&rft.pages=1-21&rft.issn=0167-6369&rft.eissn=1573-2959&rft.coden=EMASDH&rft_id=info:doi/10.1023/A:1005753919403&rft_dat=%3Cproquest_pasca%3E2140971861%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=751414951&rft_id=info:pmid/&rfr_iscdi=true |