Application of genetic-based neural networks to thermal unit commitment

A new approach using genetic algorithms based neural networks and dynamic programming (GANN-DP) to solve power system unit commitment problems is proposed in this paper. A set of feasible generator commitment schedules is first formulated by genetic-enhanced neural networks. These pre-committed sche...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on power systems 1997-05, Vol.12 (2), p.654-660
Hauptverfasser: HUANG, S.-J, HUANG, C.-L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 660
container_issue 2
container_start_page 654
container_title IEEE transactions on power systems
container_volume 12
creator HUANG, S.-J
HUANG, C.-L
description A new approach using genetic algorithms based neural networks and dynamic programming (GANN-DP) to solve power system unit commitment problems is proposed in this paper. A set of feasible generator commitment schedules is first formulated by genetic-enhanced neural networks. These pre-committed schedules are then optimized by the dynamic programming technique. By the proposed approach, learning stagnation is avoided. The neural network stability and accuracy are significantly increased. The computational performance of unit commitment in a power system is therefore highly improved. The proposed method has been tested on a practical Taiwan Power (Taipower) thermal system through the utility data. The results demonstrate the feasibility and practicality of this approach.
doi_str_mv 10.1109/59.589634
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_16009281</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>589634</ieee_id><sourcerecordid>280564</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-b827ae4aeb82980e001aa1ab249cb4eed3446f1189ac8ed101611a631e13642d3</originalsourceid><addsrcrecordid>eNqFkDFPwzAQhS0EEqUwsDJlQEgMKT7Hce2xqqAgVWKBOXKcCxiSuNiOEP8eQ6uulU53p3vfveERcgl0BkDVXalmpVSi4EdkAmUpcyrm6phMqJRlLlVJT8lZCB-UUpGECVktNpvOGh2tGzLXZm84YLQmr3XAJhtw9LpLI347_xmy6LL4jr5Pt3GwMTOu723scYjn5KTVXcCL3ZyS14f7l-Vjvn5ePS0X69wUQsa8lmyukWtMi5IUKQWtQdeMK1NzxKbgXLQAUmkjsQEKAkCLAhAKwVlTTMnN1nfj3deIIVa9DQa7Tg_oxlAxWTLFZXEYnDMpUjsIgqBUMQkJvN2CxrsQPLbVxtte-58KaPUXflWm-g8_sdc7Ux2M7lqvB2PD_oEJLkQhEna1xSwi7tWdxy8ihos9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>16009281</pqid></control><display><type>article</type><title>Application of genetic-based neural networks to thermal unit commitment</title><source>IEEE Electronic Library (IEL)</source><creator>HUANG, S.-J ; HUANG, C.-L</creator><creatorcontrib>HUANG, S.-J ; HUANG, C.-L</creatorcontrib><description>A new approach using genetic algorithms based neural networks and dynamic programming (GANN-DP) to solve power system unit commitment problems is proposed in this paper. A set of feasible generator commitment schedules is first formulated by genetic-enhanced neural networks. These pre-committed schedules are then optimized by the dynamic programming technique. By the proposed approach, learning stagnation is avoided. The neural network stability and accuracy are significantly increased. The computational performance of unit commitment in a power system is therefore highly improved. The proposed method has been tested on a practical Taiwan Power (Taipower) thermal system through the utility data. The results demonstrate the feasibility and practicality of this approach.</description><identifier>ISSN: 0885-8950</identifier><identifier>EISSN: 1558-0679</identifier><identifier>DOI: 10.1109/59.589634</identifier><identifier>CODEN: ITPSEG</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Computer networks ; Costs ; Dynamic programming ; Dynamic scheduling ; Economic data ; Electric energy ; Electric generators ; Electric load management ; Energy ; Energy economics ; Exact sciences and technology ; General, economic and professional studies ; Genetic algorithms ; Integer linear programming ; Methodology. Modelling ; Neural networks ; Power system dynamics ; Power system stability ; Processor scheduling ; Scheduling</subject><ispartof>IEEE transactions on power systems, 1997-05, Vol.12 (2), p.654-660</ispartof><rights>1997 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-b827ae4aeb82980e001aa1ab249cb4eed3446f1189ac8ed101611a631e13642d3</citedby><cites>FETCH-LOGICAL-c368t-b827ae4aeb82980e001aa1ab249cb4eed3446f1189ac8ed101611a631e13642d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/589634$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,796,23930,23931,25140,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/589634$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=2646636$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>HUANG, S.-J</creatorcontrib><creatorcontrib>HUANG, C.-L</creatorcontrib><title>Application of genetic-based neural networks to thermal unit commitment</title><title>IEEE transactions on power systems</title><addtitle>TPWRS</addtitle><description>A new approach using genetic algorithms based neural networks and dynamic programming (GANN-DP) to solve power system unit commitment problems is proposed in this paper. A set of feasible generator commitment schedules is first formulated by genetic-enhanced neural networks. These pre-committed schedules are then optimized by the dynamic programming technique. By the proposed approach, learning stagnation is avoided. The neural network stability and accuracy are significantly increased. The computational performance of unit commitment in a power system is therefore highly improved. The proposed method has been tested on a practical Taiwan Power (Taipower) thermal system through the utility data. The results demonstrate the feasibility and practicality of this approach.</description><subject>Applied sciences</subject><subject>Computer networks</subject><subject>Costs</subject><subject>Dynamic programming</subject><subject>Dynamic scheduling</subject><subject>Economic data</subject><subject>Electric energy</subject><subject>Electric generators</subject><subject>Electric load management</subject><subject>Energy</subject><subject>Energy economics</subject><subject>Exact sciences and technology</subject><subject>General, economic and professional studies</subject><subject>Genetic algorithms</subject><subject>Integer linear programming</subject><subject>Methodology. Modelling</subject><subject>Neural networks</subject><subject>Power system dynamics</subject><subject>Power system stability</subject><subject>Processor scheduling</subject><subject>Scheduling</subject><issn>0885-8950</issn><issn>1558-0679</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><recordid>eNqFkDFPwzAQhS0EEqUwsDJlQEgMKT7Hce2xqqAgVWKBOXKcCxiSuNiOEP8eQ6uulU53p3vfveERcgl0BkDVXalmpVSi4EdkAmUpcyrm6phMqJRlLlVJT8lZCB-UUpGECVktNpvOGh2tGzLXZm84YLQmr3XAJhtw9LpLI347_xmy6LL4jr5Pt3GwMTOu723scYjn5KTVXcCL3ZyS14f7l-Vjvn5ePS0X69wUQsa8lmyukWtMi5IUKQWtQdeMK1NzxKbgXLQAUmkjsQEKAkCLAhAKwVlTTMnN1nfj3deIIVa9DQa7Tg_oxlAxWTLFZXEYnDMpUjsIgqBUMQkJvN2CxrsQPLbVxtte-58KaPUXflWm-g8_sdc7Ux2M7lqvB2PD_oEJLkQhEna1xSwi7tWdxy8ihos9</recordid><startdate>19970501</startdate><enddate>19970501</enddate><creator>HUANG, S.-J</creator><creator>HUANG, C.-L</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SU</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>19970501</creationdate><title>Application of genetic-based neural networks to thermal unit commitment</title><author>HUANG, S.-J ; HUANG, C.-L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-b827ae4aeb82980e001aa1ab249cb4eed3446f1189ac8ed101611a631e13642d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Applied sciences</topic><topic>Computer networks</topic><topic>Costs</topic><topic>Dynamic programming</topic><topic>Dynamic scheduling</topic><topic>Economic data</topic><topic>Electric energy</topic><topic>Electric generators</topic><topic>Electric load management</topic><topic>Energy</topic><topic>Energy economics</topic><topic>Exact sciences and technology</topic><topic>General, economic and professional studies</topic><topic>Genetic algorithms</topic><topic>Integer linear programming</topic><topic>Methodology. Modelling</topic><topic>Neural networks</topic><topic>Power system dynamics</topic><topic>Power system stability</topic><topic>Processor scheduling</topic><topic>Scheduling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>HUANG, S.-J</creatorcontrib><creatorcontrib>HUANG, C.-L</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on power systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>HUANG, S.-J</au><au>HUANG, C.-L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of genetic-based neural networks to thermal unit commitment</atitle><jtitle>IEEE transactions on power systems</jtitle><stitle>TPWRS</stitle><date>1997-05-01</date><risdate>1997</risdate><volume>12</volume><issue>2</issue><spage>654</spage><epage>660</epage><pages>654-660</pages><issn>0885-8950</issn><eissn>1558-0679</eissn><coden>ITPSEG</coden><abstract>A new approach using genetic algorithms based neural networks and dynamic programming (GANN-DP) to solve power system unit commitment problems is proposed in this paper. A set of feasible generator commitment schedules is first formulated by genetic-enhanced neural networks. These pre-committed schedules are then optimized by the dynamic programming technique. By the proposed approach, learning stagnation is avoided. The neural network stability and accuracy are significantly increased. The computational performance of unit commitment in a power system is therefore highly improved. The proposed method has been tested on a practical Taiwan Power (Taipower) thermal system through the utility data. The results demonstrate the feasibility and practicality of this approach.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/59.589634</doi><tpages>7</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0885-8950
ispartof IEEE transactions on power systems, 1997-05, Vol.12 (2), p.654-660
issn 0885-8950
1558-0679
language eng
recordid cdi_proquest_miscellaneous_16009281
source IEEE Electronic Library (IEL)
subjects Applied sciences
Computer networks
Costs
Dynamic programming
Dynamic scheduling
Economic data
Electric energy
Electric generators
Electric load management
Energy
Energy economics
Exact sciences and technology
General, economic and professional studies
Genetic algorithms
Integer linear programming
Methodology. Modelling
Neural networks
Power system dynamics
Power system stability
Processor scheduling
Scheduling
title Application of genetic-based neural networks to thermal unit commitment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T18%3A48%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20genetic-based%20neural%20networks%20to%20thermal%20unit%20commitment&rft.jtitle=IEEE%20transactions%20on%20power%20systems&rft.au=HUANG,%20S.-J&rft.date=1997-05-01&rft.volume=12&rft.issue=2&rft.spage=654&rft.epage=660&rft.pages=654-660&rft.issn=0885-8950&rft.eissn=1558-0679&rft.coden=ITPSEG&rft_id=info:doi/10.1109/59.589634&rft_dat=%3Cproquest_RIE%3E280564%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=16009281&rft_id=info:pmid/&rft_ieee_id=589634&rfr_iscdi=true