A higher-order energy-conserving parabolic equation for range dependent ocean depth, sound speed, and density
Outgoing solutions of the wave equation, including parabolic equation (PE) and normal-mode solutions, are usually formulated so that pressure is continuous with range for range-dependent problems. The approach of conserving energy is applied to derive a higher-order energy-conserving PE that provide...
Gespeichert in:
Veröffentlicht in: | The Journal of the Acoustical Society of America 1991, Vol.89 (3), p.1068-1075 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1075 |
---|---|
container_issue | 3 |
container_start_page | 1068 |
container_title | The Journal of the Acoustical Society of America |
container_volume | 89 |
creator | COLLINS, M. D WESTWOOD, E. K |
description | Outgoing solutions of the wave equation, including parabolic equation (PE) and normal-mode solutions, are usually formulated so that pressure is continuous with range for range-dependent problems. The approach of conserving energy is applied to derive a higher-order energy-conserving PE that provides improved accuracy for problems involving large ocean bottom slopes and large range and depth variations in sound speed and density. A special numerical approach and complex Pade coefficients are applied to suppress Gibbs' oscillations. The back-propagated half-space field, an improved PE starter, is applied to handle wide propagation angles. Reference solutions generated with a complex ray model and with the rotated PE are used for comparison. |
doi_str_mv | 10.1121/1.400526 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_miscellaneous_15919239</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>15919239</sourcerecordid><originalsourceid>FETCH-LOGICAL-p214t-e21bc25a857a2cffdf98f95aca9849e25ad70025b91e2b96bd296136f6e79ba63</originalsourceid><addsrcrecordid>eNotj01LxDAYhIMouK6CPyEXPW3XJG3a5rgsfsGCFz2Xt8mbbqSbdJNW2H9vxT3NDPMwMITcc7bmXPAnvi4Yk6K8IAsuBctqKYpLsmCM8axQZXlNblL6nqOsc7Ughw3du26PMQvRYKToMXanTAefMP4439EBIrShd5ricYLRBU9tiDSC75AaHNAb9CMNGsH_5XG_oilM3tA0IJoVhdnOSHLj6ZZcWegT3p11Sb5enj-3b9nu4_V9u9llg-DFmKHgrRYSalmB0NYaq2qrJGhQdaFwbkzFmJCt4ihaVbZGqJLnpS2xUi2U-ZI8_u8OMRwnTGNzcElj34PHMKWGS8WVyNUMPpxBSBp6O7_SLjVDdAeIp4YrWRUqr_Jfgtho6A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>15919239</pqid></control><display><type>article</type><title>A higher-order energy-conserving parabolic equation for range dependent ocean depth, sound speed, and density</title><source>AIP Acoustical Society of America</source><creator>COLLINS, M. D ; WESTWOOD, E. K</creator><creatorcontrib>COLLINS, M. D ; WESTWOOD, E. K</creatorcontrib><description>Outgoing solutions of the wave equation, including parabolic equation (PE) and normal-mode solutions, are usually formulated so that pressure is continuous with range for range-dependent problems. The approach of conserving energy is applied to derive a higher-order energy-conserving PE that provides improved accuracy for problems involving large ocean bottom slopes and large range and depth variations in sound speed and density. A special numerical approach and complex Pade coefficients are applied to suppress Gibbs' oscillations. The back-propagated half-space field, an improved PE starter, is applied to handle wide propagation angles. Reference solutions generated with a complex ray model and with the rotated PE are used for comparison.</description><identifier>ISSN: 0001-4966</identifier><identifier>EISSN: 1520-8524</identifier><identifier>DOI: 10.1121/1.400526</identifier><identifier>CODEN: JASMAN</identifier><language>eng</language><publisher>Woodbury, NY: Acoustical Society of America</publisher><subject>Acoustics ; Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Physics ; Underwater sound</subject><ispartof>The Journal of the Acoustical Society of America, 1991, Vol.89 (3), p.1068-1075</ispartof><rights>1991 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>207,315,781,785,4025,27925,27926,27927</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19574937$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>COLLINS, M. D</creatorcontrib><creatorcontrib>WESTWOOD, E. K</creatorcontrib><title>A higher-order energy-conserving parabolic equation for range dependent ocean depth, sound speed, and density</title><title>The Journal of the Acoustical Society of America</title><description>Outgoing solutions of the wave equation, including parabolic equation (PE) and normal-mode solutions, are usually formulated so that pressure is continuous with range for range-dependent problems. The approach of conserving energy is applied to derive a higher-order energy-conserving PE that provides improved accuracy for problems involving large ocean bottom slopes and large range and depth variations in sound speed and density. A special numerical approach and complex Pade coefficients are applied to suppress Gibbs' oscillations. The back-propagated half-space field, an improved PE starter, is applied to handle wide propagation angles. Reference solutions generated with a complex ray model and with the rotated PE are used for comparison.</description><subject>Acoustics</subject><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Physics</subject><subject>Underwater sound</subject><issn>0001-4966</issn><issn>1520-8524</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1991</creationdate><recordtype>article</recordtype><recordid>eNotj01LxDAYhIMouK6CPyEXPW3XJG3a5rgsfsGCFz2Xt8mbbqSbdJNW2H9vxT3NDPMwMITcc7bmXPAnvi4Yk6K8IAsuBctqKYpLsmCM8axQZXlNblL6nqOsc7Ughw3du26PMQvRYKToMXanTAefMP4439EBIrShd5ricYLRBU9tiDSC75AaHNAb9CMNGsH_5XG_oilM3tA0IJoVhdnOSHLj6ZZcWegT3p11Sb5enj-3b9nu4_V9u9llg-DFmKHgrRYSalmB0NYaq2qrJGhQdaFwbkzFmJCt4ihaVbZGqJLnpS2xUi2U-ZI8_u8OMRwnTGNzcElj34PHMKWGS8WVyNUMPpxBSBp6O7_SLjVDdAeIp4YrWRUqr_Jfgtho6A</recordid><startdate>1991</startdate><enddate>1991</enddate><creator>COLLINS, M. D</creator><creator>WESTWOOD, E. K</creator><general>Acoustical Society of America</general><general>American Institute of Physics</general><scope>IQODW</scope><scope>7TN</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope></search><sort><creationdate>1991</creationdate><title>A higher-order energy-conserving parabolic equation for range dependent ocean depth, sound speed, and density</title><author>COLLINS, M. D ; WESTWOOD, E. K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p214t-e21bc25a857a2cffdf98f95aca9849e25ad70025b91e2b96bd296136f6e79ba63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1991</creationdate><topic>Acoustics</topic><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Physics</topic><topic>Underwater sound</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>COLLINS, M. D</creatorcontrib><creatorcontrib>WESTWOOD, E. K</creatorcontrib><collection>Pascal-Francis</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><jtitle>The Journal of the Acoustical Society of America</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>COLLINS, M. D</au><au>WESTWOOD, E. K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A higher-order energy-conserving parabolic equation for range dependent ocean depth, sound speed, and density</atitle><jtitle>The Journal of the Acoustical Society of America</jtitle><date>1991</date><risdate>1991</risdate><volume>89</volume><issue>3</issue><spage>1068</spage><epage>1075</epage><pages>1068-1075</pages><issn>0001-4966</issn><eissn>1520-8524</eissn><coden>JASMAN</coden><abstract>Outgoing solutions of the wave equation, including parabolic equation (PE) and normal-mode solutions, are usually formulated so that pressure is continuous with range for range-dependent problems. The approach of conserving energy is applied to derive a higher-order energy-conserving PE that provides improved accuracy for problems involving large ocean bottom slopes and large range and depth variations in sound speed and density. A special numerical approach and complex Pade coefficients are applied to suppress Gibbs' oscillations. The back-propagated half-space field, an improved PE starter, is applied to handle wide propagation angles. Reference solutions generated with a complex ray model and with the rotated PE are used for comparison.</abstract><cop>Woodbury, NY</cop><pub>Acoustical Society of America</pub><doi>10.1121/1.400526</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-4966 |
ispartof | The Journal of the Acoustical Society of America, 1991, Vol.89 (3), p.1068-1075 |
issn | 0001-4966 1520-8524 |
language | eng |
recordid | cdi_proquest_miscellaneous_15919239 |
source | AIP Acoustical Society of America |
subjects | Acoustics Exact sciences and technology Fundamental areas of phenomenology (including applications) Physics Underwater sound |
title | A higher-order energy-conserving parabolic equation for range dependent ocean depth, sound speed, and density |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T19%3A57%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20higher-order%20energy-conserving%20parabolic%20equation%20for%20range%20dependent%20ocean%20depth,%20sound%20speed,%20and%20density&rft.jtitle=The%20Journal%20of%20the%20Acoustical%20Society%20of%20America&rft.au=COLLINS,%20M.%20D&rft.date=1991&rft.volume=89&rft.issue=3&rft.spage=1068&rft.epage=1075&rft.pages=1068-1075&rft.issn=0001-4966&rft.eissn=1520-8524&rft.coden=JASMAN&rft_id=info:doi/10.1121/1.400526&rft_dat=%3Cproquest_pasca%3E15919239%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=15919239&rft_id=info:pmid/&rfr_iscdi=true |