Prolactin Sensitivity of Mammary Epithelial Cells from Mice Exposed Neonatally to Diethylstilbestrol

Abstract We examined the responsiveness to prolactin and growth hormone of mammary epithelial cells from mice exposed neonatally to diethylstilbestrol (DES) and from control mice. The mammary epithelial cells were cultured inside collagen gels with serum-free medium containing insulin, epidermal gro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Experimental biology and medicine (Maywood, N.J.) N.J.), 1989-11, Vol.192 (2), p.187-191
Hauptverfasser: Levay-Young, Brett K., Bern, Howard A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract We examined the responsiveness to prolactin and growth hormone of mammary epithelial cells from mice exposed neonatally to diethylstilbestrol (DES) and from control mice. The mammary epithelial cells were cultured inside collagen gels with serum-free medium containing insulin, epidermal growth factor, and linoleic acid. This produces prolactin-sensitive cells with low levels of casein production, as measured in cellular homogenates with a specific enzyme-linked immunosorbent assay for α-casein. The collagen gels containing these cells were then released and the medium supplements changed to insulin, linoleic acid, and prolactin at concentrations from 10 to 1000 ng/ml and growth hormone at 0, 10, or 100 ng/ml. This second phase of the culture, the differentiation phase, allows the cells to accumulate casein if they have this capacity. When cultured with prolactin only (no growth hormone), the cells from DES-exposed mice consistently accumulated 50–100% of the casein content of normal cells, but never more. Growth hormone, when added to prolactin-containing medium, increased casein accumulation above the levels seen with prolactin alone. Combinations of prolactin and growth hormone enhanced the difference between casein accumulation in DES-exposed and control cells, and DES-exposed cells were much less responsive to growth hormone. In our studies, the isolated mammary epithelial cells of estrogen-exposed mice are not more sensitive to prolactin than cells from normal animals as previous reports had suggested, but rather are generally less sensitive to hormonal stimulants.
ISSN:0037-9727
1535-3702
1535-3699
1525-1373
DOI:10.3181/00379727-192-42977