Small ribosomal subunit RNA sequences, evolutionary relationships among different life forms, and mitochondrial origins
A tree was constructed from a structurally conserved area in an alignment of 83 small ribosomal subunit sequences of eukaryotic, archaebacterial, eubacterial, plastidial, and mitochondrial origin. The algorithm involved computation and optimization of a dissimilarity matrix. According to the tree, o...
Gespeichert in:
Veröffentlicht in: | Journal of molecular evolution 1990-01, Vol.30 (5), p.463-476 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 476 |
---|---|
container_issue | 5 |
container_start_page | 463 |
container_title | Journal of molecular evolution |
container_volume | 30 |
creator | Van de Peer, Y Neefs, J M De Wachter, R |
description | A tree was constructed from a structurally conserved area in an alignment of 83 small ribosomal subunit sequences of eukaryotic, archaebacterial, eubacterial, plastidial, and mitochondrial origin. The algorithm involved computation and optimization of a dissimilarity matrix. According to the tree, only plant mitochondria belong to the eubacterial primary kingdom, whereas animal, fungal, algal, and ciliate mitochondria branch off from an internal node situated between the tree primary kingdoms. This result is at variance with a parsimony tree of similar size published by Cedergren et al. (J Mol Evol 28:98-112, 1988), which postulates the mitochondria to be monophyletic and to belong to the eubacterial primary kingdom. The discrepancy does not follow from the use of conflicting sequence alignments, hence it must be due to the use of different treeing algorithms. We tested our algorithm on a set of sequences resulting from a simulated evolution and found it capable of faithfully reconstructing a branching topology that involved very unequal evolutionary rates. The use of more limited or more extended areas of the complete sequence alignment, comprising only very conserved or also more variable portions of the small ribosomal subunit structure, does have some influence on the tree topology. In all cases, however, the nonplant mitochondria seem to branch off before the emergence of eubacteria, and the differences are limited to the branching pattern among different types of mitochondria. |
doi_str_mv | 10.1007/BF02101118 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_15880112</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>15880112</sourcerecordid><originalsourceid>FETCH-LOGICAL-p138t-8d46b7d7a39a894c23971d1f5b9ef67cc0f27f6f2d8abbe17f9701ce4222ef33</originalsourceid><addsrcrecordid>eNotkD1PwzAYhD2ASiks7EiemAjYzoedsVQUkCqQoHvkxK9bI8cOdgLi3-OKTnfDcyfdIXRFyR0lhN8_rAmjhFIqTtCcEMYyJoriDJ3H-EkI5WWdz9CMHYBSzNHPRy-txcG0PvpkcZzayZkRv78ucYSvCVwH8RbDt7fTaLyT4RcHsPLg494MEcveux1WRmsI4EZsjQasfehTTDqFezP6bu-dCib1-2B2xsULdKqljXB51AXarh-3q-ds8_b0slpusoHmYsyEKqqWKy7zWoq66Fhec6qoLtsadMW7jmjGdaWZErJtgXJdc0I7KBhjoPN8gW7-a4fg05Y4Nr2JHVgrHfgpNrQUIp3FEnh9BKe2B9UMwfRpanM8Kv8DmWVqdg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>15880112</pqid></control><display><type>article</type><title>Small ribosomal subunit RNA sequences, evolutionary relationships among different life forms, and mitochondrial origins</title><source>MEDLINE</source><source>SpringerNature Journals</source><creator>Van de Peer, Y ; Neefs, J M ; De Wachter, R</creator><creatorcontrib>Van de Peer, Y ; Neefs, J M ; De Wachter, R</creatorcontrib><description>A tree was constructed from a structurally conserved area in an alignment of 83 small ribosomal subunit sequences of eukaryotic, archaebacterial, eubacterial, plastidial, and mitochondrial origin. The algorithm involved computation and optimization of a dissimilarity matrix. According to the tree, only plant mitochondria belong to the eubacterial primary kingdom, whereas animal, fungal, algal, and ciliate mitochondria branch off from an internal node situated between the tree primary kingdoms. This result is at variance with a parsimony tree of similar size published by Cedergren et al. (J Mol Evol 28:98-112, 1988), which postulates the mitochondria to be monophyletic and to belong to the eubacterial primary kingdom. The discrepancy does not follow from the use of conflicting sequence alignments, hence it must be due to the use of different treeing algorithms. We tested our algorithm on a set of sequences resulting from a simulated evolution and found it capable of faithfully reconstructing a branching topology that involved very unequal evolutionary rates. The use of more limited or more extended areas of the complete sequence alignment, comprising only very conserved or also more variable portions of the small ribosomal subunit structure, does have some influence on the tree topology. In all cases, however, the nonplant mitochondria seem to branch off before the emergence of eubacteria, and the differences are limited to the branching pattern among different types of mitochondria.</description><identifier>ISSN: 0022-2844</identifier><identifier>DOI: 10.1007/BF02101118</identifier><identifier>PMID: 2111858</identifier><language>eng</language><publisher>Germany</publisher><subject>Algorithms ; Animals ; Bacteria - genetics ; Biological Evolution ; Brucella abortus - genetics ; Eubacterium ; Mitochondria - analysis ; Mutation ; Nucleic Acid Conformation ; Rana catesbeiana - genetics ; RNA, Ribosomal - analysis ; Thermoplasma - genetics</subject><ispartof>Journal of molecular evolution, 1990-01, Vol.30 (5), p.463-476</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/2111858$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Van de Peer, Y</creatorcontrib><creatorcontrib>Neefs, J M</creatorcontrib><creatorcontrib>De Wachter, R</creatorcontrib><title>Small ribosomal subunit RNA sequences, evolutionary relationships among different life forms, and mitochondrial origins</title><title>Journal of molecular evolution</title><addtitle>J Mol Evol</addtitle><description>A tree was constructed from a structurally conserved area in an alignment of 83 small ribosomal subunit sequences of eukaryotic, archaebacterial, eubacterial, plastidial, and mitochondrial origin. The algorithm involved computation and optimization of a dissimilarity matrix. According to the tree, only plant mitochondria belong to the eubacterial primary kingdom, whereas animal, fungal, algal, and ciliate mitochondria branch off from an internal node situated between the tree primary kingdoms. This result is at variance with a parsimony tree of similar size published by Cedergren et al. (J Mol Evol 28:98-112, 1988), which postulates the mitochondria to be monophyletic and to belong to the eubacterial primary kingdom. The discrepancy does not follow from the use of conflicting sequence alignments, hence it must be due to the use of different treeing algorithms. We tested our algorithm on a set of sequences resulting from a simulated evolution and found it capable of faithfully reconstructing a branching topology that involved very unequal evolutionary rates. The use of more limited or more extended areas of the complete sequence alignment, comprising only very conserved or also more variable portions of the small ribosomal subunit structure, does have some influence on the tree topology. In all cases, however, the nonplant mitochondria seem to branch off before the emergence of eubacteria, and the differences are limited to the branching pattern among different types of mitochondria.</description><subject>Algorithms</subject><subject>Animals</subject><subject>Bacteria - genetics</subject><subject>Biological Evolution</subject><subject>Brucella abortus - genetics</subject><subject>Eubacterium</subject><subject>Mitochondria - analysis</subject><subject>Mutation</subject><subject>Nucleic Acid Conformation</subject><subject>Rana catesbeiana - genetics</subject><subject>RNA, Ribosomal - analysis</subject><subject>Thermoplasma - genetics</subject><issn>0022-2844</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1990</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNotkD1PwzAYhD2ASiks7EiemAjYzoedsVQUkCqQoHvkxK9bI8cOdgLi3-OKTnfDcyfdIXRFyR0lhN8_rAmjhFIqTtCcEMYyJoriDJ3H-EkI5WWdz9CMHYBSzNHPRy-txcG0PvpkcZzayZkRv78ucYSvCVwH8RbDt7fTaLyT4RcHsPLg494MEcveux1WRmsI4EZsjQasfehTTDqFezP6bu-dCib1-2B2xsULdKqljXB51AXarh-3q-ds8_b0slpusoHmYsyEKqqWKy7zWoq66Fhec6qoLtsadMW7jmjGdaWZErJtgXJdc0I7KBhjoPN8gW7-a4fg05Y4Nr2JHVgrHfgpNrQUIp3FEnh9BKe2B9UMwfRpanM8Kv8DmWVqdg</recordid><startdate>19900101</startdate><enddate>19900101</enddate><creator>Van de Peer, Y</creator><creator>Neefs, J M</creator><creator>De Wachter, R</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>19900101</creationdate><title>Small ribosomal subunit RNA sequences, evolutionary relationships among different life forms, and mitochondrial origins</title><author>Van de Peer, Y ; Neefs, J M ; De Wachter, R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p138t-8d46b7d7a39a894c23971d1f5b9ef67cc0f27f6f2d8abbe17f9701ce4222ef33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1990</creationdate><topic>Algorithms</topic><topic>Animals</topic><topic>Bacteria - genetics</topic><topic>Biological Evolution</topic><topic>Brucella abortus - genetics</topic><topic>Eubacterium</topic><topic>Mitochondria - analysis</topic><topic>Mutation</topic><topic>Nucleic Acid Conformation</topic><topic>Rana catesbeiana - genetics</topic><topic>RNA, Ribosomal - analysis</topic><topic>Thermoplasma - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Van de Peer, Y</creatorcontrib><creatorcontrib>Neefs, J M</creatorcontrib><creatorcontrib>De Wachter, R</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Journal of molecular evolution</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Van de Peer, Y</au><au>Neefs, J M</au><au>De Wachter, R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Small ribosomal subunit RNA sequences, evolutionary relationships among different life forms, and mitochondrial origins</atitle><jtitle>Journal of molecular evolution</jtitle><addtitle>J Mol Evol</addtitle><date>1990-01-01</date><risdate>1990</risdate><volume>30</volume><issue>5</issue><spage>463</spage><epage>476</epage><pages>463-476</pages><issn>0022-2844</issn><abstract>A tree was constructed from a structurally conserved area in an alignment of 83 small ribosomal subunit sequences of eukaryotic, archaebacterial, eubacterial, plastidial, and mitochondrial origin. The algorithm involved computation and optimization of a dissimilarity matrix. According to the tree, only plant mitochondria belong to the eubacterial primary kingdom, whereas animal, fungal, algal, and ciliate mitochondria branch off from an internal node situated between the tree primary kingdoms. This result is at variance with a parsimony tree of similar size published by Cedergren et al. (J Mol Evol 28:98-112, 1988), which postulates the mitochondria to be monophyletic and to belong to the eubacterial primary kingdom. The discrepancy does not follow from the use of conflicting sequence alignments, hence it must be due to the use of different treeing algorithms. We tested our algorithm on a set of sequences resulting from a simulated evolution and found it capable of faithfully reconstructing a branching topology that involved very unequal evolutionary rates. The use of more limited or more extended areas of the complete sequence alignment, comprising only very conserved or also more variable portions of the small ribosomal subunit structure, does have some influence on the tree topology. In all cases, however, the nonplant mitochondria seem to branch off before the emergence of eubacteria, and the differences are limited to the branching pattern among different types of mitochondria.</abstract><cop>Germany</cop><pmid>2111858</pmid><doi>10.1007/BF02101118</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2844 |
ispartof | Journal of molecular evolution, 1990-01, Vol.30 (5), p.463-476 |
issn | 0022-2844 |
language | eng |
recordid | cdi_proquest_miscellaneous_15880112 |
source | MEDLINE; SpringerNature Journals |
subjects | Algorithms Animals Bacteria - genetics Biological Evolution Brucella abortus - genetics Eubacterium Mitochondria - analysis Mutation Nucleic Acid Conformation Rana catesbeiana - genetics RNA, Ribosomal - analysis Thermoplasma - genetics |
title | Small ribosomal subunit RNA sequences, evolutionary relationships among different life forms, and mitochondrial origins |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T17%3A34%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Small%20ribosomal%20subunit%20RNA%20sequences,%20evolutionary%20relationships%20among%20different%20life%20forms,%20and%20mitochondrial%20origins&rft.jtitle=Journal%20of%20molecular%20evolution&rft.au=Van%20de%20Peer,%20Y&rft.date=1990-01-01&rft.volume=30&rft.issue=5&rft.spage=463&rft.epage=476&rft.pages=463-476&rft.issn=0022-2844&rft_id=info:doi/10.1007/BF02101118&rft_dat=%3Cproquest_pubme%3E15880112%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=15880112&rft_id=info:pmid/2111858&rfr_iscdi=true |