Cytosolic calcium homeostasis in fungi: roles of plasma membrane transport and intracellular sequestration of calcium
Cytosolic free calcium ([Ca2+]c) has been measured in the mycelial fungus Neurospora crassa with Ca2+ -selective microelectrodes. The mean value of [Ca2+]c is 92 +/- 15 nM and it is insensitive to external pH values between 5.8 and 8.4. Simultaneous measurement of membrane potential enables the elec...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 1990-12, Vol.87 (23), p.9348-9352 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9352 |
---|---|
container_issue | 23 |
container_start_page | 9348 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 87 |
creator | Miller, A.J. (Institute for Arable Crops Research-Rothamsted, Harpenden, Hertfordshire, UK) Vogg, G Sanders, D |
description | Cytosolic free calcium ([Ca2+]c) has been measured in the mycelial fungus Neurospora crassa with Ca2+ -selective microelectrodes. The mean value of [Ca2+]c is 92 +/- 15 nM and it is insensitive to external pH values between 5.8 and 8.4. Simultaneous measurement of membrane potential enables the electrochemical potential difference for Ca2+ across the plasma membrane to be estimated as about -60 kJ.mol-1--a value that cannot be sustained either by a simple Ca2+ -ATPase, or, in alkaline conditions, by straightforward H+/Ca2+ exchange with a stoichiometric ratio of 5 H+/Ca2+. We propose that the most likely alternative mechanism of Ca2+ efflux is ATP-driven H+/Ca2+ exchange, with a stoichiometric ratio of at least 2 H+/Ca2+. In accord with this proposal, depletion of the ATP level from 2.5 to 0.5 mM by CN- elicits an increase in [Ca2+]c, but only in alkaline conditions in which the putative H+/Ca2+ -ATPase would be selectively stalled. The insensitivity of Ca2+ homeostasis to CN- in more acid conditions implies that the Km (ATP) of the transport system is 100 micromole or less. The increase in [Ca2+]c in the presence of CN- at pH 8.4 (50 nM.min-1) is compared with 45Ca2+ influx (0.62 mM-min-1) under the same conditions. The proportion of entering Ca2+ remaining free in the cytosol is only 8 X 10-5, and since the concentration of available chelation sites on Ca2+ -binding proteins is unlikely to exceed 100 micromole, a major role for the fungal vacuole in short-term Ca2+ homeostasis is indicated. This notion is supported by the observation that cytosolic Ca2+ homeostasis is disrupted by a protonophore, which rapidly abolishes the driving force (a transmembrane pH difference) for Ca2+ uptake into fungal vacuoles |
doi_str_mv | 10.1073/pnas.87.23.9348 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_15870306</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2355819</jstor_id><sourcerecordid>2355819</sourcerecordid><originalsourceid>FETCH-LOGICAL-c569t-d5ba40a10fc091f355337d98e2f23d5ab817a538c2d11f62cdca0dddfc053eeb3</originalsourceid><addsrcrecordid>eNqFkc1v1DAQxS0EKtuFMxICZCEBp936I46digta8SVV4gA9W17H3nXlxEvsIPrfM2FDSy9wceS833jezEPoCSVrSiQ_O_Qmr5VcM75ueKXuoQUlDV3VVUPuowUhTK5UxaqH6DTnK0JIIxQ5QSeMVlJQvkDj5rqknGKw2Jpow9jhfepcysXkkHHosR_7XTjHQ4ou4-TxIZrcGdy5bjuY3uECZz6koWDTt1AAd-tiHKMZcHbfR5fhTwmpn4rnHo_QA29ido_n7xJdfnj_bfNpdfHl4-fNu4uVFXVTVq3YmooYSryFoTwXgnPZNsoxz3grzFZRaQRXlrWU-prZ1hrSti3ggju35Uv09vjuYdx2rrVuchf1YQidGa51MkHfVfqw17v0QwtBawblL4_lsI6gsw3F2b1Nfe9s0TWpBAVDS_R67jGk39PqLuRpA7CcNGatCAWuqv4LUqEk4aQG8OwI2iHlPDh_Y5gSPaWup9S1kppxPaUOFc__nvOGn2MG_dWsmwwReIjMhnz7bCOk5FIA92LmpgZ_5DuN3vwT0H6MsbifBchnR_IqlzTcOoIQFW1AfnqUvUna7AZwc_m1oYxQcPILo8rjOA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>15870306</pqid></control><display><type>article</type><title>Cytosolic calcium homeostasis in fungi: roles of plasma membrane transport and intracellular sequestration of calcium</title><source>MEDLINE</source><source>Full-Text Journals in Chemistry (Open access)</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>JSTOR</source><creator>Miller, A.J. (Institute for Arable Crops Research-Rothamsted, Harpenden, Hertfordshire, UK) ; Vogg, G ; Sanders, D</creator><creatorcontrib>Miller, A.J. (Institute for Arable Crops Research-Rothamsted, Harpenden, Hertfordshire, UK) ; Vogg, G ; Sanders, D</creatorcontrib><description>Cytosolic free calcium ([Ca2+]c) has been measured in the mycelial fungus Neurospora crassa with Ca2+ -selective microelectrodes. The mean value of [Ca2+]c is 92 +/- 15 nM and it is insensitive to external pH values between 5.8 and 8.4. Simultaneous measurement of membrane potential enables the electrochemical potential difference for Ca2+ across the plasma membrane to be estimated as about -60 kJ.mol-1--a value that cannot be sustained either by a simple Ca2+ -ATPase, or, in alkaline conditions, by straightforward H+/Ca2+ exchange with a stoichiometric ratio of 5 H+/Ca2+. We propose that the most likely alternative mechanism of Ca2+ efflux is ATP-driven H+/Ca2+ exchange, with a stoichiometric ratio of at least 2 H+/Ca2+. In accord with this proposal, depletion of the ATP level from 2.5 to 0.5 mM by CN- elicits an increase in [Ca2+]c, but only in alkaline conditions in which the putative H+/Ca2+ -ATPase would be selectively stalled. The insensitivity of Ca2+ homeostasis to CN- in more acid conditions implies that the Km (ATP) of the transport system is 100 micromole or less. The increase in [Ca2+]c in the presence of CN- at pH 8.4 (50 nM.min-1) is compared with 45Ca2+ influx (0.62 mM-min-1) under the same conditions. The proportion of entering Ca2+ remaining free in the cytosol is only 8 X 10-5, and since the concentration of available chelation sites on Ca2+ -binding proteins is unlikely to exceed 100 micromole, a major role for the fungal vacuole in short-term Ca2+ homeostasis is indicated. This notion is supported by the observation that cytosolic Ca2+ homeostasis is disrupted by a protonophore, which rapidly abolishes the driving force (a transmembrane pH difference) for Ca2+ uptake into fungal vacuoles</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.87.23.9348</identifier><identifier>PMID: 2147513</identifier><identifier>CODEN: PNASA6</identifier><language>eng</language><publisher>Washington, DC: National Academy of Sciences of the United States of America</publisher><subject>550201 - Biochemistry- Tracer Techniques ; ACID ANHYDRASES ; Adenosine Triphosphate - metabolism ; ALKALINE EARTH ISOTOPES ; Antiporters ; ATP-ASE ; BASIC BIOLOGICAL SCIENCES ; BETA DECAY RADIOISOTOPES ; BETA-MINUS DECAY RADIOISOTOPES ; BIOCHEMICAL REACTION KINETICS ; Biological and medical sciences ; Biological Transport ; CALCIO ; CALCIUM ; Calcium - metabolism ; CALCIUM 45 ; CALCIUM ISOTOPES ; Calcium-Binding Proteins - metabolism ; Calcium-Transporting ATPases - metabolism ; CATION ; Cation Transport Proteins ; CATIONES ; Cell Membrane - metabolism ; Cell membranes ; Cell physiology ; CHAMPIGNON ; Cytosol - metabolism ; DAYS LIVING RADIOISOTOPES ; ELECTRICIDAD ; ELECTRICITE ; Electrodes ; Electrophysiology - methods ; ENZYMES ; ESTRUCTURA CELULAR ; EUMYCOTA ; EVEN-ODD NUCLEI ; Fundamental and applied biological sciences. Psychology ; FUNGI ; HOMEOSTASIS ; HONGOS ; Hydrogen-Ion Concentration ; HYDROLASES ; INTERMEDIATE MASS NUCLEI ; ION ; IONES ; ISOTOPES ; KINETICS ; Membrane and intracellular transports ; membrane potential ; MEMBRANE TRANSPORT ; Microelectrodes ; Molecular and cellular biology ; NEUROSPORA ; Neurospora crassa ; Neurospora crassa - metabolism ; NUCLEI ; PHOSPHOHYDROLASES ; Plant cells ; PLANTS ; PROTEINAS ; PROTEINE ; protons ; RADIOISOTOPES ; REACTION KINETICS ; STRUCTURE CELLULAIRE ; Thermodynamics ; UPTAKE ; Vacuoles ; Yeasts</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 1990-12, Vol.87 (23), p.9348-9352</ispartof><rights>1991 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c569t-d5ba40a10fc091f355337d98e2f23d5ab817a538c2d11f62cdca0dddfc053eeb3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/87/23.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2355819$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2355819$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27903,27904,53770,53772,57996,58229</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19577375$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/2147513$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/6045153$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Miller, A.J. (Institute for Arable Crops Research-Rothamsted, Harpenden, Hertfordshire, UK)</creatorcontrib><creatorcontrib>Vogg, G</creatorcontrib><creatorcontrib>Sanders, D</creatorcontrib><title>Cytosolic calcium homeostasis in fungi: roles of plasma membrane transport and intracellular sequestration of calcium</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Cytosolic free calcium ([Ca2+]c) has been measured in the mycelial fungus Neurospora crassa with Ca2+ -selective microelectrodes. The mean value of [Ca2+]c is 92 +/- 15 nM and it is insensitive to external pH values between 5.8 and 8.4. Simultaneous measurement of membrane potential enables the electrochemical potential difference for Ca2+ across the plasma membrane to be estimated as about -60 kJ.mol-1--a value that cannot be sustained either by a simple Ca2+ -ATPase, or, in alkaline conditions, by straightforward H+/Ca2+ exchange with a stoichiometric ratio of 5 H+/Ca2+. We propose that the most likely alternative mechanism of Ca2+ efflux is ATP-driven H+/Ca2+ exchange, with a stoichiometric ratio of at least 2 H+/Ca2+. In accord with this proposal, depletion of the ATP level from 2.5 to 0.5 mM by CN- elicits an increase in [Ca2+]c, but only in alkaline conditions in which the putative H+/Ca2+ -ATPase would be selectively stalled. The insensitivity of Ca2+ homeostasis to CN- in more acid conditions implies that the Km (ATP) of the transport system is 100 micromole or less. The increase in [Ca2+]c in the presence of CN- at pH 8.4 (50 nM.min-1) is compared with 45Ca2+ influx (0.62 mM-min-1) under the same conditions. The proportion of entering Ca2+ remaining free in the cytosol is only 8 X 10-5, and since the concentration of available chelation sites on Ca2+ -binding proteins is unlikely to exceed 100 micromole, a major role for the fungal vacuole in short-term Ca2+ homeostasis is indicated. This notion is supported by the observation that cytosolic Ca2+ homeostasis is disrupted by a protonophore, which rapidly abolishes the driving force (a transmembrane pH difference) for Ca2+ uptake into fungal vacuoles</description><subject>550201 - Biochemistry- Tracer Techniques</subject><subject>ACID ANHYDRASES</subject><subject>Adenosine Triphosphate - metabolism</subject><subject>ALKALINE EARTH ISOTOPES</subject><subject>Antiporters</subject><subject>ATP-ASE</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>BETA DECAY RADIOISOTOPES</subject><subject>BETA-MINUS DECAY RADIOISOTOPES</subject><subject>BIOCHEMICAL REACTION KINETICS</subject><subject>Biological and medical sciences</subject><subject>Biological Transport</subject><subject>CALCIO</subject><subject>CALCIUM</subject><subject>Calcium - metabolism</subject><subject>CALCIUM 45</subject><subject>CALCIUM ISOTOPES</subject><subject>Calcium-Binding Proteins - metabolism</subject><subject>Calcium-Transporting ATPases - metabolism</subject><subject>CATION</subject><subject>Cation Transport Proteins</subject><subject>CATIONES</subject><subject>Cell Membrane - metabolism</subject><subject>Cell membranes</subject><subject>Cell physiology</subject><subject>CHAMPIGNON</subject><subject>Cytosol - metabolism</subject><subject>DAYS LIVING RADIOISOTOPES</subject><subject>ELECTRICIDAD</subject><subject>ELECTRICITE</subject><subject>Electrodes</subject><subject>Electrophysiology - methods</subject><subject>ENZYMES</subject><subject>ESTRUCTURA CELULAR</subject><subject>EUMYCOTA</subject><subject>EVEN-ODD NUCLEI</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>FUNGI</subject><subject>HOMEOSTASIS</subject><subject>HONGOS</subject><subject>Hydrogen-Ion Concentration</subject><subject>HYDROLASES</subject><subject>INTERMEDIATE MASS NUCLEI</subject><subject>ION</subject><subject>IONES</subject><subject>ISOTOPES</subject><subject>KINETICS</subject><subject>Membrane and intracellular transports</subject><subject>membrane potential</subject><subject>MEMBRANE TRANSPORT</subject><subject>Microelectrodes</subject><subject>Molecular and cellular biology</subject><subject>NEUROSPORA</subject><subject>Neurospora crassa</subject><subject>Neurospora crassa - metabolism</subject><subject>NUCLEI</subject><subject>PHOSPHOHYDROLASES</subject><subject>Plant cells</subject><subject>PLANTS</subject><subject>PROTEINAS</subject><subject>PROTEINE</subject><subject>protons</subject><subject>RADIOISOTOPES</subject><subject>REACTION KINETICS</subject><subject>STRUCTURE CELLULAIRE</subject><subject>Thermodynamics</subject><subject>UPTAKE</subject><subject>Vacuoles</subject><subject>Yeasts</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1990</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1v1DAQxS0EKtuFMxICZCEBp936I46digta8SVV4gA9W17H3nXlxEvsIPrfM2FDSy9wceS833jezEPoCSVrSiQ_O_Qmr5VcM75ueKXuoQUlDV3VVUPuowUhTK5UxaqH6DTnK0JIIxQ5QSeMVlJQvkDj5rqknGKw2Jpow9jhfepcysXkkHHosR_7XTjHQ4ou4-TxIZrcGdy5bjuY3uECZz6koWDTt1AAd-tiHKMZcHbfR5fhTwmpn4rnHo_QA29ido_n7xJdfnj_bfNpdfHl4-fNu4uVFXVTVq3YmooYSryFoTwXgnPZNsoxz3grzFZRaQRXlrWU-prZ1hrSti3ggju35Uv09vjuYdx2rrVuchf1YQidGa51MkHfVfqw17v0QwtBawblL4_lsI6gsw3F2b1Nfe9s0TWpBAVDS_R67jGk39PqLuRpA7CcNGatCAWuqv4LUqEk4aQG8OwI2iHlPDh_Y5gSPaWup9S1kppxPaUOFc__nvOGn2MG_dWsmwwReIjMhnz7bCOk5FIA92LmpgZ_5DuN3vwT0H6MsbifBchnR_IqlzTcOoIQFW1AfnqUvUna7AZwc_m1oYxQcPILo8rjOA</recordid><startdate>19901201</startdate><enddate>19901201</enddate><creator>Miller, A.J. (Institute for Arable Crops Research-Rothamsted, Harpenden, Hertfordshire, UK)</creator><creator>Vogg, G</creator><creator>Sanders, D</creator><general>National Academy of Sciences of the United States of America</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>8FD</scope><scope>FR3</scope><scope>M7N</scope><scope>M7Z</scope><scope>P64</scope><scope>7X8</scope><scope>OTOTI</scope><scope>5PM</scope></search><sort><creationdate>19901201</creationdate><title>Cytosolic calcium homeostasis in fungi: roles of plasma membrane transport and intracellular sequestration of calcium</title><author>Miller, A.J. (Institute for Arable Crops Research-Rothamsted, Harpenden, Hertfordshire, UK) ; Vogg, G ; Sanders, D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c569t-d5ba40a10fc091f355337d98e2f23d5ab817a538c2d11f62cdca0dddfc053eeb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1990</creationdate><topic>550201 - Biochemistry- Tracer Techniques</topic><topic>ACID ANHYDRASES</topic><topic>Adenosine Triphosphate - metabolism</topic><topic>ALKALINE EARTH ISOTOPES</topic><topic>Antiporters</topic><topic>ATP-ASE</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>BETA DECAY RADIOISOTOPES</topic><topic>BETA-MINUS DECAY RADIOISOTOPES</topic><topic>BIOCHEMICAL REACTION KINETICS</topic><topic>Biological and medical sciences</topic><topic>Biological Transport</topic><topic>CALCIO</topic><topic>CALCIUM</topic><topic>Calcium - metabolism</topic><topic>CALCIUM 45</topic><topic>CALCIUM ISOTOPES</topic><topic>Calcium-Binding Proteins - metabolism</topic><topic>Calcium-Transporting ATPases - metabolism</topic><topic>CATION</topic><topic>Cation Transport Proteins</topic><topic>CATIONES</topic><topic>Cell Membrane - metabolism</topic><topic>Cell membranes</topic><topic>Cell physiology</topic><topic>CHAMPIGNON</topic><topic>Cytosol - metabolism</topic><topic>DAYS LIVING RADIOISOTOPES</topic><topic>ELECTRICIDAD</topic><topic>ELECTRICITE</topic><topic>Electrodes</topic><topic>Electrophysiology - methods</topic><topic>ENZYMES</topic><topic>ESTRUCTURA CELULAR</topic><topic>EUMYCOTA</topic><topic>EVEN-ODD NUCLEI</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>FUNGI</topic><topic>HOMEOSTASIS</topic><topic>HONGOS</topic><topic>Hydrogen-Ion Concentration</topic><topic>HYDROLASES</topic><topic>INTERMEDIATE MASS NUCLEI</topic><topic>ION</topic><topic>IONES</topic><topic>ISOTOPES</topic><topic>KINETICS</topic><topic>Membrane and intracellular transports</topic><topic>membrane potential</topic><topic>MEMBRANE TRANSPORT</topic><topic>Microelectrodes</topic><topic>Molecular and cellular biology</topic><topic>NEUROSPORA</topic><topic>Neurospora crassa</topic><topic>Neurospora crassa - metabolism</topic><topic>NUCLEI</topic><topic>PHOSPHOHYDROLASES</topic><topic>Plant cells</topic><topic>PLANTS</topic><topic>PROTEINAS</topic><topic>PROTEINE</topic><topic>protons</topic><topic>RADIOISOTOPES</topic><topic>REACTION KINETICS</topic><topic>STRUCTURE CELLULAIRE</topic><topic>Thermodynamics</topic><topic>UPTAKE</topic><topic>Vacuoles</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Miller, A.J. (Institute for Arable Crops Research-Rothamsted, Harpenden, Hertfordshire, UK)</creatorcontrib><creatorcontrib>Vogg, G</creatorcontrib><creatorcontrib>Sanders, D</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biochemistry Abstracts 1</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Miller, A.J. (Institute for Arable Crops Research-Rothamsted, Harpenden, Hertfordshire, UK)</au><au>Vogg, G</au><au>Sanders, D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cytosolic calcium homeostasis in fungi: roles of plasma membrane transport and intracellular sequestration of calcium</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>1990-12-01</date><risdate>1990</risdate><volume>87</volume><issue>23</issue><spage>9348</spage><epage>9352</epage><pages>9348-9352</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><coden>PNASA6</coden><abstract>Cytosolic free calcium ([Ca2+]c) has been measured in the mycelial fungus Neurospora crassa with Ca2+ -selective microelectrodes. The mean value of [Ca2+]c is 92 +/- 15 nM and it is insensitive to external pH values between 5.8 and 8.4. Simultaneous measurement of membrane potential enables the electrochemical potential difference for Ca2+ across the plasma membrane to be estimated as about -60 kJ.mol-1--a value that cannot be sustained either by a simple Ca2+ -ATPase, or, in alkaline conditions, by straightforward H+/Ca2+ exchange with a stoichiometric ratio of 5 H+/Ca2+. We propose that the most likely alternative mechanism of Ca2+ efflux is ATP-driven H+/Ca2+ exchange, with a stoichiometric ratio of at least 2 H+/Ca2+. In accord with this proposal, depletion of the ATP level from 2.5 to 0.5 mM by CN- elicits an increase in [Ca2+]c, but only in alkaline conditions in which the putative H+/Ca2+ -ATPase would be selectively stalled. The insensitivity of Ca2+ homeostasis to CN- in more acid conditions implies that the Km (ATP) of the transport system is 100 micromole or less. The increase in [Ca2+]c in the presence of CN- at pH 8.4 (50 nM.min-1) is compared with 45Ca2+ influx (0.62 mM-min-1) under the same conditions. The proportion of entering Ca2+ remaining free in the cytosol is only 8 X 10-5, and since the concentration of available chelation sites on Ca2+ -binding proteins is unlikely to exceed 100 micromole, a major role for the fungal vacuole in short-term Ca2+ homeostasis is indicated. This notion is supported by the observation that cytosolic Ca2+ homeostasis is disrupted by a protonophore, which rapidly abolishes the driving force (a transmembrane pH difference) for Ca2+ uptake into fungal vacuoles</abstract><cop>Washington, DC</cop><pub>National Academy of Sciences of the United States of America</pub><pmid>2147513</pmid><doi>10.1073/pnas.87.23.9348</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 1990-12, Vol.87 (23), p.9348-9352 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_proquest_miscellaneous_15870306 |
source | MEDLINE; Full-Text Journals in Chemistry (Open access); PubMed Central; Alma/SFX Local Collection; JSTOR |
subjects | 550201 - Biochemistry- Tracer Techniques ACID ANHYDRASES Adenosine Triphosphate - metabolism ALKALINE EARTH ISOTOPES Antiporters ATP-ASE BASIC BIOLOGICAL SCIENCES BETA DECAY RADIOISOTOPES BETA-MINUS DECAY RADIOISOTOPES BIOCHEMICAL REACTION KINETICS Biological and medical sciences Biological Transport CALCIO CALCIUM Calcium - metabolism CALCIUM 45 CALCIUM ISOTOPES Calcium-Binding Proteins - metabolism Calcium-Transporting ATPases - metabolism CATION Cation Transport Proteins CATIONES Cell Membrane - metabolism Cell membranes Cell physiology CHAMPIGNON Cytosol - metabolism DAYS LIVING RADIOISOTOPES ELECTRICIDAD ELECTRICITE Electrodes Electrophysiology - methods ENZYMES ESTRUCTURA CELULAR EUMYCOTA EVEN-ODD NUCLEI Fundamental and applied biological sciences. Psychology FUNGI HOMEOSTASIS HONGOS Hydrogen-Ion Concentration HYDROLASES INTERMEDIATE MASS NUCLEI ION IONES ISOTOPES KINETICS Membrane and intracellular transports membrane potential MEMBRANE TRANSPORT Microelectrodes Molecular and cellular biology NEUROSPORA Neurospora crassa Neurospora crassa - metabolism NUCLEI PHOSPHOHYDROLASES Plant cells PLANTS PROTEINAS PROTEINE protons RADIOISOTOPES REACTION KINETICS STRUCTURE CELLULAIRE Thermodynamics UPTAKE Vacuoles Yeasts |
title | Cytosolic calcium homeostasis in fungi: roles of plasma membrane transport and intracellular sequestration of calcium |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T16%3A51%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cytosolic%20calcium%20homeostasis%20in%20fungi:%20roles%20of%20plasma%20membrane%20transport%20and%20intracellular%20sequestration%20of%20calcium&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Miller,%20A.J.%20(Institute%20for%20Arable%20Crops%20Research-Rothamsted,%20Harpenden,%20Hertfordshire,%20UK)&rft.date=1990-12-01&rft.volume=87&rft.issue=23&rft.spage=9348&rft.epage=9352&rft.pages=9348-9352&rft.issn=0027-8424&rft.eissn=1091-6490&rft.coden=PNASA6&rft_id=info:doi/10.1073/pnas.87.23.9348&rft_dat=%3Cjstor_proqu%3E2355819%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=15870306&rft_id=info:pmid/2147513&rft_jstor_id=2355819&rfr_iscdi=true |