Relationship between Psychostimulant-Induced ``High" and Dopamine Transporter Occupancy
The ability of cocaine to inhibit the dopamine transporter (DAT) appears to be crucial for its reinforcing properties. The potential use of drugs that produce longlasting inhibition of the DAT as a mean of preventing the ``high'' and reducing drug-seeking behavior has become a major strate...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 1996-09, Vol.93 (19), p.10388-10392 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10392 |
---|---|
container_issue | 19 |
container_start_page | 10388 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 93 |
creator | Volkow, N. D. G.-J. Wang Fowler, J. S. Gatley, S. J. Y.-S. Ding Logan, J. Dewey, S. L. Hitzemann, R. Lieberman, J. |
description | The ability of cocaine to inhibit the dopamine transporter (DAT) appears to be crucial for its reinforcing properties. The potential use of drugs that produce longlasting inhibition of the DAT as a mean of preventing the ``high'' and reducing drug-seeking behavior has become a major strategy in medication development. However, neither the relation between the high and DAT inhibition nor the ability to block the high by prior DAT blockade have ever been demonstrated. To evaluate if DAT could prevent the high induced by methylphenidate (MP), a drug which like cocaine inhibits the DAT, we compared the responses in eight nondrug-abusing subjects between the first and the second of two MP doses (0.375 mg/kg, i.v.) given 60 min apart. At 60 min the high from MP has returned to baseline, but 75-80% of the drug remains in brain. Positron-emission tomography and [$^{11}$C]d-threo-MP were used to estimate DAT occupancies at different times after MP. DAT inhibition by MP did not block or attenuate the high from a second dose of MP given 60 min later, despite a 80% residual transporter occupancy from the first dose. Furthermore some subjects did not perceive a high after single or repeated administration despite significant DAT blockade. These results indicate that DAT occupancy is not sufficient to account for the high, and that for DAT inhibitors to be therapeutically effective, occupancies >80% may be required. |
doi_str_mv | 10.1073/pnas.93.19.10388 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_15843469</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>40395</jstor_id><sourcerecordid>40395</sourcerecordid><originalsourceid>FETCH-LOGICAL-c523t-bca3119d6915712db127d63755ae51772975c1d21a5d015df95bed62dc669f693</originalsourceid><addsrcrecordid>eNqFkc1v1DAQxS0EKkvhjpAQUQ-ISxZPHH9JXFD5aKVKRaiIo-vYTjerxE5tB9j_niy7rCgHOI1G7_dGM_MQegp4CZiT16PXaSnJEuTcEyHuoQVgCSWrJb6PFhhXvBR1VT9Ej1JaY4wlFfgIHQkBTABeoK-fXa9zF3xadWPRuPzdOV98ShuzCil3w9Rrn8tzbyfjbHF9fdbdrE4K7W3xLox66LwrrqL2aQwxu1hcGjON2pvNY_Sg1X1yT_b1GH358P7q9Ky8uPx4fvr2ojS0IrlsjCYA0jIJlENlG6i4ZYRTqh0FzivJqQFbgaYWA7WtpI2zrLKGMdkySY7Rm93ccWoGZ43zOepejbEbdNyooDt1V_HdSt2Eb4oIIuvZ_nJvj-F2cimroUvG9fPVLkxJcUFqxgn7LwhU1DO6XejkL3AdpujnH6gKAwEpMZkhvINMDClF1x4WBqy2waptsEoSBVL9Cna2PP_z0INhn-Ssv9jrW-dv9e6EV_8mVDv1fXY_8ow-26HrlEM8sDUmkpKf0uTBcA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201319903</pqid></control><display><type>article</type><title>Relationship between Psychostimulant-Induced ``High" and Dopamine Transporter Occupancy</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Volkow, N. D. ; G.-J. Wang ; Fowler, J. S. ; Gatley, S. J. ; Y.-S. Ding ; Logan, J. ; Dewey, S. L. ; Hitzemann, R. ; Lieberman, J.</creator><creatorcontrib>Volkow, N. D. ; G.-J. Wang ; Fowler, J. S. ; Gatley, S. J. ; Y.-S. Ding ; Logan, J. ; Dewey, S. L. ; Hitzemann, R. ; Lieberman, J.</creatorcontrib><description>The ability of cocaine to inhibit the dopamine transporter (DAT) appears to be crucial for its reinforcing properties. The potential use of drugs that produce longlasting inhibition of the DAT as a mean of preventing the ``high'' and reducing drug-seeking behavior has become a major strategy in medication development. However, neither the relation between the high and DAT inhibition nor the ability to block the high by prior DAT blockade have ever been demonstrated. To evaluate if DAT could prevent the high induced by methylphenidate (MP), a drug which like cocaine inhibits the DAT, we compared the responses in eight nondrug-abusing subjects between the first and the second of two MP doses (0.375 mg/kg, i.v.) given 60 min apart. At 60 min the high from MP has returned to baseline, but 75-80% of the drug remains in brain. Positron-emission tomography and [$^{11}$C]d-threo-MP were used to estimate DAT occupancies at different times after MP. DAT inhibition by MP did not block or attenuate the high from a second dose of MP given 60 min later, despite a 80% residual transporter occupancy from the first dose. Furthermore some subjects did not perceive a high after single or repeated administration despite significant DAT blockade. These results indicate that DAT occupancy is not sufficient to account for the high, and that for DAT inhibitors to be therapeutically effective, occupancies >80% may be required.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.93.19.10388</identifier><identifier>PMID: 8816810</identifier><language>eng</language><publisher>United States: National Academy of Sciences of the United States of America</publisher><subject>Adult ; Anxiety ; Blood plasma ; Blood Pressure - drug effects ; Brain - diagnostic imaging ; Brain - drug effects ; Brain - physiology ; Carbon Radioisotopes ; Carrier Proteins - drug effects ; Carrier Proteins - metabolism ; Central Nervous System Stimulants - pharmacokinetics ; Central Nervous System Stimulants - pharmacology ; Cerebellum ; Cerebellum - diagnostic imaging ; Cerebellum - drug effects ; Cerebellum - physiology ; Cocaine ; Corpus Striatum - diagnostic imaging ; Corpus Striatum - drug effects ; Corpus Striatum - physiology ; Dopamine Plasma Membrane Transport Proteins ; Dopamine Uptake Inhibitors - pharmacokinetics ; Dopamine Uptake Inhibitors - pharmacology ; Dosage ; Drug therapy ; Emotions - drug effects ; Emotions - physiology ; Heart rate ; Heart Rate - drug effects ; Humans ; Kinetics ; Male ; Medical research ; Medications ; Membrane Glycoproteins ; Membrane Transport Proteins ; Methylphenidate - pharmacokinetics ; Methylphenidate - pharmacology ; Nerve Tissue Proteins ; Perception tests ; Positron emission tomography ; T tests ; Time Factors ; Tissue Distribution ; Tomography, Emission-Computed</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 1996-09, Vol.93 (19), p.10388-10392</ispartof><rights>Copyright 1996 National Academy of Sciences</rights><rights>Copyright National Academy of Sciences Sep 17, 1996</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c523t-bca3119d6915712db127d63755ae51772975c1d21a5d015df95bed62dc669f693</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/93/19.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/40395$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/40395$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/8816810$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Volkow, N. D.</creatorcontrib><creatorcontrib>G.-J. Wang</creatorcontrib><creatorcontrib>Fowler, J. S.</creatorcontrib><creatorcontrib>Gatley, S. J.</creatorcontrib><creatorcontrib>Y.-S. Ding</creatorcontrib><creatorcontrib>Logan, J.</creatorcontrib><creatorcontrib>Dewey, S. L.</creatorcontrib><creatorcontrib>Hitzemann, R.</creatorcontrib><creatorcontrib>Lieberman, J.</creatorcontrib><title>Relationship between Psychostimulant-Induced ``High" and Dopamine Transporter Occupancy</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The ability of cocaine to inhibit the dopamine transporter (DAT) appears to be crucial for its reinforcing properties. The potential use of drugs that produce longlasting inhibition of the DAT as a mean of preventing the ``high'' and reducing drug-seeking behavior has become a major strategy in medication development. However, neither the relation between the high and DAT inhibition nor the ability to block the high by prior DAT blockade have ever been demonstrated. To evaluate if DAT could prevent the high induced by methylphenidate (MP), a drug which like cocaine inhibits the DAT, we compared the responses in eight nondrug-abusing subjects between the first and the second of two MP doses (0.375 mg/kg, i.v.) given 60 min apart. At 60 min the high from MP has returned to baseline, but 75-80% of the drug remains in brain. Positron-emission tomography and [$^{11}$C]d-threo-MP were used to estimate DAT occupancies at different times after MP. DAT inhibition by MP did not block or attenuate the high from a second dose of MP given 60 min later, despite a 80% residual transporter occupancy from the first dose. Furthermore some subjects did not perceive a high after single or repeated administration despite significant DAT blockade. These results indicate that DAT occupancy is not sufficient to account for the high, and that for DAT inhibitors to be therapeutically effective, occupancies >80% may be required.</description><subject>Adult</subject><subject>Anxiety</subject><subject>Blood plasma</subject><subject>Blood Pressure - drug effects</subject><subject>Brain - diagnostic imaging</subject><subject>Brain - drug effects</subject><subject>Brain - physiology</subject><subject>Carbon Radioisotopes</subject><subject>Carrier Proteins - drug effects</subject><subject>Carrier Proteins - metabolism</subject><subject>Central Nervous System Stimulants - pharmacokinetics</subject><subject>Central Nervous System Stimulants - pharmacology</subject><subject>Cerebellum</subject><subject>Cerebellum - diagnostic imaging</subject><subject>Cerebellum - drug effects</subject><subject>Cerebellum - physiology</subject><subject>Cocaine</subject><subject>Corpus Striatum - diagnostic imaging</subject><subject>Corpus Striatum - drug effects</subject><subject>Corpus Striatum - physiology</subject><subject>Dopamine Plasma Membrane Transport Proteins</subject><subject>Dopamine Uptake Inhibitors - pharmacokinetics</subject><subject>Dopamine Uptake Inhibitors - pharmacology</subject><subject>Dosage</subject><subject>Drug therapy</subject><subject>Emotions - drug effects</subject><subject>Emotions - physiology</subject><subject>Heart rate</subject><subject>Heart Rate - drug effects</subject><subject>Humans</subject><subject>Kinetics</subject><subject>Male</subject><subject>Medical research</subject><subject>Medications</subject><subject>Membrane Glycoproteins</subject><subject>Membrane Transport Proteins</subject><subject>Methylphenidate - pharmacokinetics</subject><subject>Methylphenidate - pharmacology</subject><subject>Nerve Tissue Proteins</subject><subject>Perception tests</subject><subject>Positron emission tomography</subject><subject>T tests</subject><subject>Time Factors</subject><subject>Tissue Distribution</subject><subject>Tomography, Emission-Computed</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1v1DAQxS0EKkvhjpAQUQ-ISxZPHH9JXFD5aKVKRaiIo-vYTjerxE5tB9j_niy7rCgHOI1G7_dGM_MQegp4CZiT16PXaSnJEuTcEyHuoQVgCSWrJb6PFhhXvBR1VT9Ej1JaY4wlFfgIHQkBTABeoK-fXa9zF3xadWPRuPzdOV98ShuzCil3w9Rrn8tzbyfjbHF9fdbdrE4K7W3xLox66LwrrqL2aQwxu1hcGjON2pvNY_Sg1X1yT_b1GH358P7q9Ky8uPx4fvr2ojS0IrlsjCYA0jIJlENlG6i4ZYRTqh0FzivJqQFbgaYWA7WtpI2zrLKGMdkySY7Rm93ccWoGZ43zOepejbEbdNyooDt1V_HdSt2Eb4oIIuvZ_nJvj-F2cimroUvG9fPVLkxJcUFqxgn7LwhU1DO6XejkL3AdpujnH6gKAwEpMZkhvINMDClF1x4WBqy2waptsEoSBVL9Cna2PP_z0INhn-Ssv9jrW-dv9e6EV_8mVDv1fXY_8ow-26HrlEM8sDUmkpKf0uTBcA</recordid><startdate>19960917</startdate><enddate>19960917</enddate><creator>Volkow, N. D.</creator><creator>G.-J. Wang</creator><creator>Fowler, J. S.</creator><creator>Gatley, S. J.</creator><creator>Y.-S. Ding</creator><creator>Logan, J.</creator><creator>Dewey, S. L.</creator><creator>Hitzemann, R.</creator><creator>Lieberman, J.</creator><general>National Academy of Sciences of the United States of America</general><general>National Acad Sciences</general><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>19960917</creationdate><title>Relationship between Psychostimulant-Induced ``High" and Dopamine Transporter Occupancy</title><author>Volkow, N. D. ; G.-J. Wang ; Fowler, J. S. ; Gatley, S. J. ; Y.-S. Ding ; Logan, J. ; Dewey, S. L. ; Hitzemann, R. ; Lieberman, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c523t-bca3119d6915712db127d63755ae51772975c1d21a5d015df95bed62dc669f693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Adult</topic><topic>Anxiety</topic><topic>Blood plasma</topic><topic>Blood Pressure - drug effects</topic><topic>Brain - diagnostic imaging</topic><topic>Brain - drug effects</topic><topic>Brain - physiology</topic><topic>Carbon Radioisotopes</topic><topic>Carrier Proteins - drug effects</topic><topic>Carrier Proteins - metabolism</topic><topic>Central Nervous System Stimulants - pharmacokinetics</topic><topic>Central Nervous System Stimulants - pharmacology</topic><topic>Cerebellum</topic><topic>Cerebellum - diagnostic imaging</topic><topic>Cerebellum - drug effects</topic><topic>Cerebellum - physiology</topic><topic>Cocaine</topic><topic>Corpus Striatum - diagnostic imaging</topic><topic>Corpus Striatum - drug effects</topic><topic>Corpus Striatum - physiology</topic><topic>Dopamine Plasma Membrane Transport Proteins</topic><topic>Dopamine Uptake Inhibitors - pharmacokinetics</topic><topic>Dopamine Uptake Inhibitors - pharmacology</topic><topic>Dosage</topic><topic>Drug therapy</topic><topic>Emotions - drug effects</topic><topic>Emotions - physiology</topic><topic>Heart rate</topic><topic>Heart Rate - drug effects</topic><topic>Humans</topic><topic>Kinetics</topic><topic>Male</topic><topic>Medical research</topic><topic>Medications</topic><topic>Membrane Glycoproteins</topic><topic>Membrane Transport Proteins</topic><topic>Methylphenidate - pharmacokinetics</topic><topic>Methylphenidate - pharmacology</topic><topic>Nerve Tissue Proteins</topic><topic>Perception tests</topic><topic>Positron emission tomography</topic><topic>T tests</topic><topic>Time Factors</topic><topic>Tissue Distribution</topic><topic>Tomography, Emission-Computed</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Volkow, N. D.</creatorcontrib><creatorcontrib>G.-J. Wang</creatorcontrib><creatorcontrib>Fowler, J. S.</creatorcontrib><creatorcontrib>Gatley, S. J.</creatorcontrib><creatorcontrib>Y.-S. Ding</creatorcontrib><creatorcontrib>Logan, J.</creatorcontrib><creatorcontrib>Dewey, S. L.</creatorcontrib><creatorcontrib>Hitzemann, R.</creatorcontrib><creatorcontrib>Lieberman, J.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Volkow, N. D.</au><au>G.-J. Wang</au><au>Fowler, J. S.</au><au>Gatley, S. J.</au><au>Y.-S. Ding</au><au>Logan, J.</au><au>Dewey, S. L.</au><au>Hitzemann, R.</au><au>Lieberman, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Relationship between Psychostimulant-Induced ``High" and Dopamine Transporter Occupancy</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>1996-09-17</date><risdate>1996</risdate><volume>93</volume><issue>19</issue><spage>10388</spage><epage>10392</epage><pages>10388-10392</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The ability of cocaine to inhibit the dopamine transporter (DAT) appears to be crucial for its reinforcing properties. The potential use of drugs that produce longlasting inhibition of the DAT as a mean of preventing the ``high'' and reducing drug-seeking behavior has become a major strategy in medication development. However, neither the relation between the high and DAT inhibition nor the ability to block the high by prior DAT blockade have ever been demonstrated. To evaluate if DAT could prevent the high induced by methylphenidate (MP), a drug which like cocaine inhibits the DAT, we compared the responses in eight nondrug-abusing subjects between the first and the second of two MP doses (0.375 mg/kg, i.v.) given 60 min apart. At 60 min the high from MP has returned to baseline, but 75-80% of the drug remains in brain. Positron-emission tomography and [$^{11}$C]d-threo-MP were used to estimate DAT occupancies at different times after MP. DAT inhibition by MP did not block or attenuate the high from a second dose of MP given 60 min later, despite a 80% residual transporter occupancy from the first dose. Furthermore some subjects did not perceive a high after single or repeated administration despite significant DAT blockade. These results indicate that DAT occupancy is not sufficient to account for the high, and that for DAT inhibitors to be therapeutically effective, occupancies >80% may be required.</abstract><cop>United States</cop><pub>National Academy of Sciences of the United States of America</pub><pmid>8816810</pmid><doi>10.1073/pnas.93.19.10388</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 1996-09, Vol.93 (19), p.10388-10392 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_proquest_miscellaneous_15843469 |
source | Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Adult Anxiety Blood plasma Blood Pressure - drug effects Brain - diagnostic imaging Brain - drug effects Brain - physiology Carbon Radioisotopes Carrier Proteins - drug effects Carrier Proteins - metabolism Central Nervous System Stimulants - pharmacokinetics Central Nervous System Stimulants - pharmacology Cerebellum Cerebellum - diagnostic imaging Cerebellum - drug effects Cerebellum - physiology Cocaine Corpus Striatum - diagnostic imaging Corpus Striatum - drug effects Corpus Striatum - physiology Dopamine Plasma Membrane Transport Proteins Dopamine Uptake Inhibitors - pharmacokinetics Dopamine Uptake Inhibitors - pharmacology Dosage Drug therapy Emotions - drug effects Emotions - physiology Heart rate Heart Rate - drug effects Humans Kinetics Male Medical research Medications Membrane Glycoproteins Membrane Transport Proteins Methylphenidate - pharmacokinetics Methylphenidate - pharmacology Nerve Tissue Proteins Perception tests Positron emission tomography T tests Time Factors Tissue Distribution Tomography, Emission-Computed |
title | Relationship between Psychostimulant-Induced ``High" and Dopamine Transporter Occupancy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T09%3A05%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Relationship%20between%20Psychostimulant-Induced%20%60%60High%22%20and%20Dopamine%20Transporter%20Occupancy&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Volkow,%20N.%20D.&rft.date=1996-09-17&rft.volume=93&rft.issue=19&rft.spage=10388&rft.epage=10392&rft.pages=10388-10392&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.93.19.10388&rft_dat=%3Cjstor_proqu%3E40395%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201319903&rft_id=info:pmid/8816810&rft_jstor_id=40395&rfr_iscdi=true |