The two acetyl-coenzyme A synthetases of Saccharomyces cerevisiae differ with respect to kinetic properties and transcriptional regulation

Saccharomyces cerevisiae contains two structural genes, ACS1 and ACS2, each encoding an active acetyl-coenzyme A synthetase. Characterization of enzyme activities in cell-free extracts from strains expressing either of the two genes revealed differences in the catalytic properties of the two enzymes...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 1996-11, Vol.271 (46), p.28953-28959
Hauptverfasser: Berg, M.A. van den (Delft University of Technology, Delft, The Netherlands.), Jong-Gubbels, P. de, Kortland, C.J, Dijken, J.P. van, Pronk, J.T, Steensma, H.Y
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 28959
container_issue 46
container_start_page 28953
container_title The Journal of biological chemistry
container_volume 271
creator Berg, M.A. van den (Delft University of Technology, Delft, The Netherlands.)
Jong-Gubbels, P. de
Kortland, C.J
Dijken, J.P. van
Pronk, J.T
Steensma, H.Y
description Saccharomyces cerevisiae contains two structural genes, ACS1 and ACS2, each encoding an active acetyl-coenzyme A synthetase. Characterization of enzyme activities in cell-free extracts from strains expressing either of the two genes revealed differences in the catalytic properties of the two enzymes. The Km for acetate of Acs1p was about 30-fold lower than that of Acs2p and Acs1p, but not Acs2p, could use propionate as a substrate. Enzyme activity measurements and mRNA analyses showed that ACS1 and ACS2 were both expressed during carbon-limited growth on glucose, ethanol, and acetate in aerobic chemostat cultures. In anaerobic glucose-limited cultures, only the ACS2 gene was expressed. Based on these facts, the products of the ACS1 and ACS2 genes were identified as the previously described "aerobic" and "non-aerobic" forms of acetyl-coenzyme A synthetase, respectively. Batch and glucose-pulse experiments revealed that transcription of ACS1 is subject to glucose repression. A mutant strain lacking Acs2p was unable to grow on glucose in batch cultures, but grew readily in aerobic glucose-limited chemostat cultures, in which the low residual glucose concentration alleviated glucose repression. Experiments in which ethanol was pulsed to aerobic ethanol-limited chemostat cultures indicated that, in addition to glucose, ethanol also repressed ACS1 transcription, although to a lesser extent. In contrast, transcription of ACS2 was slightly induced by ethanol and glucose. Absence of ACS2 prevented complete glucose repression of ACS1, indicating that ACS2 (in)directly is involved in the transcriptional regulation of ACS1
doi_str_mv 10.1074/jbc.271.46.28953
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_15828037</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>15828037</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-e1fd4ee38a9ea97cb1b76d0bc83aa5acc4317301b9df90a24ca1ccc30eed3b2b3</originalsourceid><addsrcrecordid>eNpdkE9r3DAQxUVpSTdp7yVQ0KHk5q1k2WvrGJb-g0APSaA3MR6P10psy5W0WdyP0E9dpbv00LkMM_PeY_gx9k6KtRRV8fGhwXVeyXWxWee1LtULtpKiVpkq5Y-XbCVELjOdl_Vrdh7Cg0hVaHnGzmotRVmUK_b7riceD44DUlyGDB1Nv5aR-DUPyxR7ihAocNfxW0DswbtxwbRA8vRkgwXire068vxgY889hZkw8uj4o50oWuSzdzP5aJMJppZHD1NAb-do3QRDcuz2AzwPb9irDoZAb0_9gt1__nS3_ZrdfP_ybXt9k2Ehy5iR7NqCSNWgCXSFjWyqTSsarBVAmZ4slKyUkI1uOy0gLxAkIipB1Komb9QFuzrmps9-7ilEM9qANAwwkdsHI8s6r4WqklAchehdCJ46M3s7gl-MFOYZv0n4TcJvio35iz9Z3p-y981I7T_DiXe6fzjee7vrD9aTaazDnsb_Yy6Psg6cgZ23wdzf6ioFVFL9AUkJmjo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>15828037</pqid></control><display><type>article</type><title>The two acetyl-coenzyme A synthetases of Saccharomyces cerevisiae differ with respect to kinetic properties and transcriptional regulation</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Berg, M.A. van den (Delft University of Technology, Delft, The Netherlands.) ; Jong-Gubbels, P. de ; Kortland, C.J ; Dijken, J.P. van ; Pronk, J.T ; Steensma, H.Y</creator><creatorcontrib>Berg, M.A. van den (Delft University of Technology, Delft, The Netherlands.) ; Jong-Gubbels, P. de ; Kortland, C.J ; Dijken, J.P. van ; Pronk, J.T ; Steensma, H.Y</creatorcontrib><description>Saccharomyces cerevisiae contains two structural genes, ACS1 and ACS2, each encoding an active acetyl-coenzyme A synthetase. Characterization of enzyme activities in cell-free extracts from strains expressing either of the two genes revealed differences in the catalytic properties of the two enzymes. The Km for acetate of Acs1p was about 30-fold lower than that of Acs2p and Acs1p, but not Acs2p, could use propionate as a substrate. Enzyme activity measurements and mRNA analyses showed that ACS1 and ACS2 were both expressed during carbon-limited growth on glucose, ethanol, and acetate in aerobic chemostat cultures. In anaerobic glucose-limited cultures, only the ACS2 gene was expressed. Based on these facts, the products of the ACS1 and ACS2 genes were identified as the previously described "aerobic" and "non-aerobic" forms of acetyl-coenzyme A synthetase, respectively. Batch and glucose-pulse experiments revealed that transcription of ACS1 is subject to glucose repression. A mutant strain lacking Acs2p was unable to grow on glucose in batch cultures, but grew readily in aerobic glucose-limited chemostat cultures, in which the low residual glucose concentration alleviated glucose repression. Experiments in which ethanol was pulsed to aerobic ethanol-limited chemostat cultures indicated that, in addition to glucose, ethanol also repressed ACS1 transcription, although to a lesser extent. In contrast, transcription of ACS2 was slightly induced by ethanol and glucose. Absence of ACS2 prevented complete glucose repression of ACS1, indicating that ACS2 (in)directly is involved in the transcriptional regulation of ACS1</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.271.46.28953</identifier><identifier>PMID: 8910545</identifier><language>eng</language><publisher>United States: American Society for Biochemistry and Molecular Biology</publisher><subject>Acetate-CoA Ligase - genetics ; Acetate-CoA Ligase - metabolism ; ACIDE ACETIQUE ; ACIDO ACETICO ; ACTIVIDAD ENZIMATICA ; ACTIVITE ENZYMATIQUE ; ARN MENSAJERO ; ARN MESSAGER ; ETANOL ; ETHANOL ; Ethanol - pharmacology ; EXPRESION GENICA ; EXPRESSION DES GENES ; Fermentation ; GENE ; Gene Expression Regulation, Enzymologic - drug effects ; Gene Expression Regulation, Fungal - drug effects ; GENES ; GENETICA ; GENETIQUE ; GLUCOSA ; GLUCOSE ; Glucose - metabolism ; ISOENZIMAS ; ISOENZYME ; Isoenzymes - metabolism ; Kinetics ; LIGASAS ; LIGASE ; RNA, Messenger - genetics ; SACCHAROMYCES CEREVISIAE ; Saccharomyces cerevisiae - enzymology ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - growth &amp; development ; TRANSCRIPCION ; TRANSCRIPTION ; Transcription, Genetic ; Transgenes</subject><ispartof>The Journal of biological chemistry, 1996-11, Vol.271 (46), p.28953-28959</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-e1fd4ee38a9ea97cb1b76d0bc83aa5acc4317301b9df90a24ca1ccc30eed3b2b3</citedby><cites>FETCH-LOGICAL-c415t-e1fd4ee38a9ea97cb1b76d0bc83aa5acc4317301b9df90a24ca1ccc30eed3b2b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/8910545$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Berg, M.A. van den (Delft University of Technology, Delft, The Netherlands.)</creatorcontrib><creatorcontrib>Jong-Gubbels, P. de</creatorcontrib><creatorcontrib>Kortland, C.J</creatorcontrib><creatorcontrib>Dijken, J.P. van</creatorcontrib><creatorcontrib>Pronk, J.T</creatorcontrib><creatorcontrib>Steensma, H.Y</creatorcontrib><title>The two acetyl-coenzyme A synthetases of Saccharomyces cerevisiae differ with respect to kinetic properties and transcriptional regulation</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Saccharomyces cerevisiae contains two structural genes, ACS1 and ACS2, each encoding an active acetyl-coenzyme A synthetase. Characterization of enzyme activities in cell-free extracts from strains expressing either of the two genes revealed differences in the catalytic properties of the two enzymes. The Km for acetate of Acs1p was about 30-fold lower than that of Acs2p and Acs1p, but not Acs2p, could use propionate as a substrate. Enzyme activity measurements and mRNA analyses showed that ACS1 and ACS2 were both expressed during carbon-limited growth on glucose, ethanol, and acetate in aerobic chemostat cultures. In anaerobic glucose-limited cultures, only the ACS2 gene was expressed. Based on these facts, the products of the ACS1 and ACS2 genes were identified as the previously described "aerobic" and "non-aerobic" forms of acetyl-coenzyme A synthetase, respectively. Batch and glucose-pulse experiments revealed that transcription of ACS1 is subject to glucose repression. A mutant strain lacking Acs2p was unable to grow on glucose in batch cultures, but grew readily in aerobic glucose-limited chemostat cultures, in which the low residual glucose concentration alleviated glucose repression. Experiments in which ethanol was pulsed to aerobic ethanol-limited chemostat cultures indicated that, in addition to glucose, ethanol also repressed ACS1 transcription, although to a lesser extent. In contrast, transcription of ACS2 was slightly induced by ethanol and glucose. Absence of ACS2 prevented complete glucose repression of ACS1, indicating that ACS2 (in)directly is involved in the transcriptional regulation of ACS1</description><subject>Acetate-CoA Ligase - genetics</subject><subject>Acetate-CoA Ligase - metabolism</subject><subject>ACIDE ACETIQUE</subject><subject>ACIDO ACETICO</subject><subject>ACTIVIDAD ENZIMATICA</subject><subject>ACTIVITE ENZYMATIQUE</subject><subject>ARN MENSAJERO</subject><subject>ARN MESSAGER</subject><subject>ETANOL</subject><subject>ETHANOL</subject><subject>Ethanol - pharmacology</subject><subject>EXPRESION GENICA</subject><subject>EXPRESSION DES GENES</subject><subject>Fermentation</subject><subject>GENE</subject><subject>Gene Expression Regulation, Enzymologic - drug effects</subject><subject>Gene Expression Regulation, Fungal - drug effects</subject><subject>GENES</subject><subject>GENETICA</subject><subject>GENETIQUE</subject><subject>GLUCOSA</subject><subject>GLUCOSE</subject><subject>Glucose - metabolism</subject><subject>ISOENZIMAS</subject><subject>ISOENZYME</subject><subject>Isoenzymes - metabolism</subject><subject>Kinetics</subject><subject>LIGASAS</subject><subject>LIGASE</subject><subject>RNA, Messenger - genetics</subject><subject>SACCHAROMYCES CEREVISIAE</subject><subject>Saccharomyces cerevisiae - enzymology</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - growth &amp; development</subject><subject>TRANSCRIPCION</subject><subject>TRANSCRIPTION</subject><subject>Transcription, Genetic</subject><subject>Transgenes</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkE9r3DAQxUVpSTdp7yVQ0KHk5q1k2WvrGJb-g0APSaA3MR6P10psy5W0WdyP0E9dpbv00LkMM_PeY_gx9k6KtRRV8fGhwXVeyXWxWee1LtULtpKiVpkq5Y-XbCVELjOdl_Vrdh7Cg0hVaHnGzmotRVmUK_b7riceD44DUlyGDB1Nv5aR-DUPyxR7ihAocNfxW0DswbtxwbRA8vRkgwXire068vxgY889hZkw8uj4o50oWuSzdzP5aJMJppZHD1NAb-do3QRDcuz2AzwPb9irDoZAb0_9gt1__nS3_ZrdfP_ybXt9k2Ehy5iR7NqCSNWgCXSFjWyqTSsarBVAmZ4slKyUkI1uOy0gLxAkIipB1Komb9QFuzrmps9-7ilEM9qANAwwkdsHI8s6r4WqklAchehdCJ46M3s7gl-MFOYZv0n4TcJvio35iz9Z3p-y981I7T_DiXe6fzjee7vrD9aTaazDnsb_Yy6Psg6cgZ23wdzf6ioFVFL9AUkJmjo</recordid><startdate>19961115</startdate><enddate>19961115</enddate><creator>Berg, M.A. van den (Delft University of Technology, Delft, The Netherlands.)</creator><creator>Jong-Gubbels, P. de</creator><creator>Kortland, C.J</creator><creator>Dijken, J.P. van</creator><creator>Pronk, J.T</creator><creator>Steensma, H.Y</creator><general>American Society for Biochemistry and Molecular Biology</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>M7N</scope></search><sort><creationdate>19961115</creationdate><title>The two acetyl-coenzyme A synthetases of Saccharomyces cerevisiae differ with respect to kinetic properties and transcriptional regulation</title><author>Berg, M.A. van den (Delft University of Technology, Delft, The Netherlands.) ; Jong-Gubbels, P. de ; Kortland, C.J ; Dijken, J.P. van ; Pronk, J.T ; Steensma, H.Y</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-e1fd4ee38a9ea97cb1b76d0bc83aa5acc4317301b9df90a24ca1ccc30eed3b2b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Acetate-CoA Ligase - genetics</topic><topic>Acetate-CoA Ligase - metabolism</topic><topic>ACIDE ACETIQUE</topic><topic>ACIDO ACETICO</topic><topic>ACTIVIDAD ENZIMATICA</topic><topic>ACTIVITE ENZYMATIQUE</topic><topic>ARN MENSAJERO</topic><topic>ARN MESSAGER</topic><topic>ETANOL</topic><topic>ETHANOL</topic><topic>Ethanol - pharmacology</topic><topic>EXPRESION GENICA</topic><topic>EXPRESSION DES GENES</topic><topic>Fermentation</topic><topic>GENE</topic><topic>Gene Expression Regulation, Enzymologic - drug effects</topic><topic>Gene Expression Regulation, Fungal - drug effects</topic><topic>GENES</topic><topic>GENETICA</topic><topic>GENETIQUE</topic><topic>GLUCOSA</topic><topic>GLUCOSE</topic><topic>Glucose - metabolism</topic><topic>ISOENZIMAS</topic><topic>ISOENZYME</topic><topic>Isoenzymes - metabolism</topic><topic>Kinetics</topic><topic>LIGASAS</topic><topic>LIGASE</topic><topic>RNA, Messenger - genetics</topic><topic>SACCHAROMYCES CEREVISIAE</topic><topic>Saccharomyces cerevisiae - enzymology</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - growth &amp; development</topic><topic>TRANSCRIPCION</topic><topic>TRANSCRIPTION</topic><topic>Transcription, Genetic</topic><topic>Transgenes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Berg, M.A. van den (Delft University of Technology, Delft, The Netherlands.)</creatorcontrib><creatorcontrib>Jong-Gubbels, P. de</creatorcontrib><creatorcontrib>Kortland, C.J</creatorcontrib><creatorcontrib>Dijken, J.P. van</creatorcontrib><creatorcontrib>Pronk, J.T</creatorcontrib><creatorcontrib>Steensma, H.Y</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Berg, M.A. van den (Delft University of Technology, Delft, The Netherlands.)</au><au>Jong-Gubbels, P. de</au><au>Kortland, C.J</au><au>Dijken, J.P. van</au><au>Pronk, J.T</au><au>Steensma, H.Y</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The two acetyl-coenzyme A synthetases of Saccharomyces cerevisiae differ with respect to kinetic properties and transcriptional regulation</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>1996-11-15</date><risdate>1996</risdate><volume>271</volume><issue>46</issue><spage>28953</spage><epage>28959</epage><pages>28953-28959</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Saccharomyces cerevisiae contains two structural genes, ACS1 and ACS2, each encoding an active acetyl-coenzyme A synthetase. Characterization of enzyme activities in cell-free extracts from strains expressing either of the two genes revealed differences in the catalytic properties of the two enzymes. The Km for acetate of Acs1p was about 30-fold lower than that of Acs2p and Acs1p, but not Acs2p, could use propionate as a substrate. Enzyme activity measurements and mRNA analyses showed that ACS1 and ACS2 were both expressed during carbon-limited growth on glucose, ethanol, and acetate in aerobic chemostat cultures. In anaerobic glucose-limited cultures, only the ACS2 gene was expressed. Based on these facts, the products of the ACS1 and ACS2 genes were identified as the previously described "aerobic" and "non-aerobic" forms of acetyl-coenzyme A synthetase, respectively. Batch and glucose-pulse experiments revealed that transcription of ACS1 is subject to glucose repression. A mutant strain lacking Acs2p was unable to grow on glucose in batch cultures, but grew readily in aerobic glucose-limited chemostat cultures, in which the low residual glucose concentration alleviated glucose repression. Experiments in which ethanol was pulsed to aerobic ethanol-limited chemostat cultures indicated that, in addition to glucose, ethanol also repressed ACS1 transcription, although to a lesser extent. In contrast, transcription of ACS2 was slightly induced by ethanol and glucose. Absence of ACS2 prevented complete glucose repression of ACS1, indicating that ACS2 (in)directly is involved in the transcriptional regulation of ACS1</abstract><cop>United States</cop><pub>American Society for Biochemistry and Molecular Biology</pub><pmid>8910545</pmid><doi>10.1074/jbc.271.46.28953</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 1996-11, Vol.271 (46), p.28953-28959
issn 0021-9258
1083-351X
language eng
recordid cdi_proquest_miscellaneous_15828037
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Acetate-CoA Ligase - genetics
Acetate-CoA Ligase - metabolism
ACIDE ACETIQUE
ACIDO ACETICO
ACTIVIDAD ENZIMATICA
ACTIVITE ENZYMATIQUE
ARN MENSAJERO
ARN MESSAGER
ETANOL
ETHANOL
Ethanol - pharmacology
EXPRESION GENICA
EXPRESSION DES GENES
Fermentation
GENE
Gene Expression Regulation, Enzymologic - drug effects
Gene Expression Regulation, Fungal - drug effects
GENES
GENETICA
GENETIQUE
GLUCOSA
GLUCOSE
Glucose - metabolism
ISOENZIMAS
ISOENZYME
Isoenzymes - metabolism
Kinetics
LIGASAS
LIGASE
RNA, Messenger - genetics
SACCHAROMYCES CEREVISIAE
Saccharomyces cerevisiae - enzymology
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae - growth & development
TRANSCRIPCION
TRANSCRIPTION
Transcription, Genetic
Transgenes
title The two acetyl-coenzyme A synthetases of Saccharomyces cerevisiae differ with respect to kinetic properties and transcriptional regulation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T22%3A17%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20two%20acetyl-coenzyme%20A%20synthetases%20of%20Saccharomyces%20cerevisiae%20differ%20with%20respect%20to%20kinetic%20properties%20and%20transcriptional%20regulation&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Berg,%20M.A.%20van%20den%20(Delft%20University%20of%20Technology,%20Delft,%20The%20Netherlands.)&rft.date=1996-11-15&rft.volume=271&rft.issue=46&rft.spage=28953&rft.epage=28959&rft.pages=28953-28959&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.271.46.28953&rft_dat=%3Cproquest_cross%3E15828037%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=15828037&rft_id=info:pmid/8910545&rfr_iscdi=true