Scaling properties of topologically random channel networks

The analysis deals with the scaling properties of infinite topologically random channel networks (ITRNs) fast introduced by Shreve (1967, J. Geol., 75: 179–186) to model the branching structure of rivers as a random process. The expected configuration of ITRNs displays scaling behaviour only asympto...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of hydrology (Amsterdam) 1996-12, Vol.187 (1), p.183-193
Hauptverfasser: Agnese, Carmelo, D'Asaro, Francesco, Grossi, Giovanna, Rosso, Renzo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 193
container_issue 1
container_start_page 183
container_title Journal of hydrology (Amsterdam)
container_volume 187
creator Agnese, Carmelo
D'Asaro, Francesco
Grossi, Giovanna
Rosso, Renzo
description The analysis deals with the scaling properties of infinite topologically random channel networks (ITRNs) fast introduced by Shreve (1967, J. Geol., 75: 179–186) to model the branching structure of rivers as a random process. The expected configuration of ITRNs displays scaling behaviour only asymptotically, when the ruler (or ‘yardstick’) length is reduced to a very small extent. The random model can also reproduce scaling behaviour at larger ruler lengths if network magnitude and diameter are functionally related according to a reported deterministic rule. This indicates that subsets of rrRNs can be scaling and, although rrRNs are asymptotically plane-filling due to the law of large numbers, scaling ITRNs can also display fractional dimension.
doi_str_mv 10.1016/S0022-1694(96)03095-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_15817012</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022169496030958</els_id><sourcerecordid>13635432</sourcerecordid><originalsourceid>FETCH-LOGICAL-a416t-1972d28328a9edfdf95e7c1f69ac759ee217775898a5b34622d91a8b316c81843</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWD9-grgn0cNqJtl84UFE_IKCh-o5xOxsjW43Ndkq_fduW_HqXOYwz8y8PIQcAT0HCvJiQiljJUhTnRp5Rjk1otRbZARamZIpqrbJ6A_ZJXs5v9OhOK9G5HLiXRu6aTFPcY6pD5iL2BR9nMc2TsMwbJdFcl0dZ4V_c12HbdFh_x3TRz4gO41rMx7-9n3ycnf7fPNQjp_uH2-ux6WrQPYlGMVqpjnTzmDd1I0RqDw00jivhEFkoJQS2mgnXnklGasNOP3KQXoNuuL75GRzd8j4ucDc21nIHtvWdRgX2YLQoCiw_0Euuaj4ChQb0KeYc8LGzlOYubS0QO3KqV07tSth1ki7dmr1sHe82WtctG6aQrYvE0aBUxB8ML3KerUhcBDyFTDZ7AN2HuuQ0Pe2juGfHz8PBIaA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>13635432</pqid></control><display><type>article</type><title>Scaling properties of topologically random channel networks</title><source>Access via ScienceDirect (Elsevier)</source><creator>Agnese, Carmelo ; D'Asaro, Francesco ; Grossi, Giovanna ; Rosso, Renzo</creator><creatorcontrib>Agnese, Carmelo ; D'Asaro, Francesco ; Grossi, Giovanna ; Rosso, Renzo</creatorcontrib><description>The analysis deals with the scaling properties of infinite topologically random channel networks (ITRNs) fast introduced by Shreve (1967, J. Geol., 75: 179–186) to model the branching structure of rivers as a random process. The expected configuration of ITRNs displays scaling behaviour only asymptotically, when the ruler (or ‘yardstick’) length is reduced to a very small extent. The random model can also reproduce scaling behaviour at larger ruler lengths if network magnitude and diameter are functionally related according to a reported deterministic rule. This indicates that subsets of rrRNs can be scaling and, although rrRNs are asymptotically plane-filling due to the law of large numbers, scaling ITRNs can also display fractional dimension.</description><identifier>ISSN: 0022-1694</identifier><identifier>EISSN: 1879-2707</identifier><identifier>DOI: 10.1016/S0022-1694(96)03095-8</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Freshwater ; mathematics and statistics ; natural resources ; water management ; water resources</subject><ispartof>Journal of hydrology (Amsterdam), 1996-12, Vol.187 (1), p.183-193</ispartof><rights>1996</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a416t-1972d28328a9edfdf95e7c1f69ac759ee217775898a5b34622d91a8b316c81843</citedby><cites>FETCH-LOGICAL-a416t-1972d28328a9edfdf95e7c1f69ac759ee217775898a5b34622d91a8b316c81843</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0022-1694(96)03095-8$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,3550,23930,23931,25140,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Agnese, Carmelo</creatorcontrib><creatorcontrib>D'Asaro, Francesco</creatorcontrib><creatorcontrib>Grossi, Giovanna</creatorcontrib><creatorcontrib>Rosso, Renzo</creatorcontrib><title>Scaling properties of topologically random channel networks</title><title>Journal of hydrology (Amsterdam)</title><description>The analysis deals with the scaling properties of infinite topologically random channel networks (ITRNs) fast introduced by Shreve (1967, J. Geol., 75: 179–186) to model the branching structure of rivers as a random process. The expected configuration of ITRNs displays scaling behaviour only asymptotically, when the ruler (or ‘yardstick’) length is reduced to a very small extent. The random model can also reproduce scaling behaviour at larger ruler lengths if network magnitude and diameter are functionally related according to a reported deterministic rule. This indicates that subsets of rrRNs can be scaling and, although rrRNs are asymptotically plane-filling due to the law of large numbers, scaling ITRNs can also display fractional dimension.</description><subject>Freshwater</subject><subject>mathematics and statistics</subject><subject>natural resources</subject><subject>water management</subject><subject>water resources</subject><issn>0022-1694</issn><issn>1879-2707</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhoMoWD9-grgn0cNqJtl84UFE_IKCh-o5xOxsjW43Ndkq_fduW_HqXOYwz8y8PIQcAT0HCvJiQiljJUhTnRp5Rjk1otRbZARamZIpqrbJ6A_ZJXs5v9OhOK9G5HLiXRu6aTFPcY6pD5iL2BR9nMc2TsMwbJdFcl0dZ4V_c12HbdFh_x3TRz4gO41rMx7-9n3ycnf7fPNQjp_uH2-ux6WrQPYlGMVqpjnTzmDd1I0RqDw00jivhEFkoJQS2mgnXnklGasNOP3KQXoNuuL75GRzd8j4ucDc21nIHtvWdRgX2YLQoCiw_0Euuaj4ChQb0KeYc8LGzlOYubS0QO3KqV07tSth1ki7dmr1sHe82WtctG6aQrYvE0aBUxB8ML3KerUhcBDyFTDZ7AN2HuuQ0Pe2juGfHz8PBIaA</recordid><startdate>19961201</startdate><enddate>19961201</enddate><creator>Agnese, Carmelo</creator><creator>D'Asaro, Francesco</creator><creator>Grossi, Giovanna</creator><creator>Rosso, Renzo</creator><general>Elsevier B.V</general><scope>FBQ</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope></search><sort><creationdate>19961201</creationdate><title>Scaling properties of topologically random channel networks</title><author>Agnese, Carmelo ; D'Asaro, Francesco ; Grossi, Giovanna ; Rosso, Renzo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a416t-1972d28328a9edfdf95e7c1f69ac759ee217775898a5b34622d91a8b316c81843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Freshwater</topic><topic>mathematics and statistics</topic><topic>natural resources</topic><topic>water management</topic><topic>water resources</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Agnese, Carmelo</creatorcontrib><creatorcontrib>D'Asaro, Francesco</creatorcontrib><creatorcontrib>Grossi, Giovanna</creatorcontrib><creatorcontrib>Rosso, Renzo</creatorcontrib><collection>AGRIS</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Journal of hydrology (Amsterdam)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Agnese, Carmelo</au><au>D'Asaro, Francesco</au><au>Grossi, Giovanna</au><au>Rosso, Renzo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Scaling properties of topologically random channel networks</atitle><jtitle>Journal of hydrology (Amsterdam)</jtitle><date>1996-12-01</date><risdate>1996</risdate><volume>187</volume><issue>1</issue><spage>183</spage><epage>193</epage><pages>183-193</pages><issn>0022-1694</issn><eissn>1879-2707</eissn><abstract>The analysis deals with the scaling properties of infinite topologically random channel networks (ITRNs) fast introduced by Shreve (1967, J. Geol., 75: 179–186) to model the branching structure of rivers as a random process. The expected configuration of ITRNs displays scaling behaviour only asymptotically, when the ruler (or ‘yardstick’) length is reduced to a very small extent. The random model can also reproduce scaling behaviour at larger ruler lengths if network magnitude and diameter are functionally related according to a reported deterministic rule. This indicates that subsets of rrRNs can be scaling and, although rrRNs are asymptotically plane-filling due to the law of large numbers, scaling ITRNs can also display fractional dimension.</abstract><pub>Elsevier B.V</pub><doi>10.1016/S0022-1694(96)03095-8</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-1694
ispartof Journal of hydrology (Amsterdam), 1996-12, Vol.187 (1), p.183-193
issn 0022-1694
1879-2707
language eng
recordid cdi_proquest_miscellaneous_15817012
source Access via ScienceDirect (Elsevier)
subjects Freshwater
mathematics and statistics
natural resources
water management
water resources
title Scaling properties of topologically random channel networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T15%3A27%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Scaling%20properties%20of%20topologically%20random%20channel%20networks&rft.jtitle=Journal%20of%20hydrology%20(Amsterdam)&rft.au=Agnese,%20Carmelo&rft.date=1996-12-01&rft.volume=187&rft.issue=1&rft.spage=183&rft.epage=193&rft.pages=183-193&rft.issn=0022-1694&rft.eissn=1879-2707&rft_id=info:doi/10.1016/S0022-1694(96)03095-8&rft_dat=%3Cproquest_cross%3E13635432%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=13635432&rft_id=info:pmid/&rft_els_id=S0022169496030958&rfr_iscdi=true