Scaling properties of topologically random channel networks
The analysis deals with the scaling properties of infinite topologically random channel networks (ITRNs) fast introduced by Shreve (1967, J. Geol., 75: 179–186) to model the branching structure of rivers as a random process. The expected configuration of ITRNs displays scaling behaviour only asympto...
Gespeichert in:
Veröffentlicht in: | Journal of hydrology (Amsterdam) 1996-12, Vol.187 (1), p.183-193 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 193 |
---|---|
container_issue | 1 |
container_start_page | 183 |
container_title | Journal of hydrology (Amsterdam) |
container_volume | 187 |
creator | Agnese, Carmelo D'Asaro, Francesco Grossi, Giovanna Rosso, Renzo |
description | The analysis deals with the scaling properties of infinite topologically random channel networks (ITRNs) fast introduced by Shreve (1967,
J. Geol., 75: 179–186) to model the branching structure of rivers as a random process. The expected configuration of ITRNs displays scaling behaviour only asymptotically, when the ruler (or ‘yardstick’) length is reduced to a very small extent. The random model can also reproduce scaling behaviour at larger ruler lengths if network magnitude and diameter are functionally related according to a reported deterministic rule. This indicates that subsets of rrRNs can be scaling and, although rrRNs are asymptotically plane-filling due to the law of large numbers, scaling ITRNs can also display fractional dimension. |
doi_str_mv | 10.1016/S0022-1694(96)03095-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_15817012</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022169496030958</els_id><sourcerecordid>13635432</sourcerecordid><originalsourceid>FETCH-LOGICAL-a416t-1972d28328a9edfdf95e7c1f69ac759ee217775898a5b34622d91a8b316c81843</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWD9-grgn0cNqJtl84UFE_IKCh-o5xOxsjW43Ndkq_fduW_HqXOYwz8y8PIQcAT0HCvJiQiljJUhTnRp5Rjk1otRbZARamZIpqrbJ6A_ZJXs5v9OhOK9G5HLiXRu6aTFPcY6pD5iL2BR9nMc2TsMwbJdFcl0dZ4V_c12HbdFh_x3TRz4gO41rMx7-9n3ycnf7fPNQjp_uH2-ux6WrQPYlGMVqpjnTzmDd1I0RqDw00jivhEFkoJQS2mgnXnklGasNOP3KQXoNuuL75GRzd8j4ucDc21nIHtvWdRgX2YLQoCiw_0Euuaj4ChQb0KeYc8LGzlOYubS0QO3KqV07tSth1ki7dmr1sHe82WtctG6aQrYvE0aBUxB8ML3KerUhcBDyFTDZ7AN2HuuQ0Pe2juGfHz8PBIaA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>13635432</pqid></control><display><type>article</type><title>Scaling properties of topologically random channel networks</title><source>Access via ScienceDirect (Elsevier)</source><creator>Agnese, Carmelo ; D'Asaro, Francesco ; Grossi, Giovanna ; Rosso, Renzo</creator><creatorcontrib>Agnese, Carmelo ; D'Asaro, Francesco ; Grossi, Giovanna ; Rosso, Renzo</creatorcontrib><description>The analysis deals with the scaling properties of infinite topologically random channel networks (ITRNs) fast introduced by Shreve (1967,
J. Geol., 75: 179–186) to model the branching structure of rivers as a random process. The expected configuration of ITRNs displays scaling behaviour only asymptotically, when the ruler (or ‘yardstick’) length is reduced to a very small extent. The random model can also reproduce scaling behaviour at larger ruler lengths if network magnitude and diameter are functionally related according to a reported deterministic rule. This indicates that subsets of rrRNs can be scaling and, although rrRNs are asymptotically plane-filling due to the law of large numbers, scaling ITRNs can also display fractional dimension.</description><identifier>ISSN: 0022-1694</identifier><identifier>EISSN: 1879-2707</identifier><identifier>DOI: 10.1016/S0022-1694(96)03095-8</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Freshwater ; mathematics and statistics ; natural resources ; water management ; water resources</subject><ispartof>Journal of hydrology (Amsterdam), 1996-12, Vol.187 (1), p.183-193</ispartof><rights>1996</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a416t-1972d28328a9edfdf95e7c1f69ac759ee217775898a5b34622d91a8b316c81843</citedby><cites>FETCH-LOGICAL-a416t-1972d28328a9edfdf95e7c1f69ac759ee217775898a5b34622d91a8b316c81843</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0022-1694(96)03095-8$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,3550,23930,23931,25140,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Agnese, Carmelo</creatorcontrib><creatorcontrib>D'Asaro, Francesco</creatorcontrib><creatorcontrib>Grossi, Giovanna</creatorcontrib><creatorcontrib>Rosso, Renzo</creatorcontrib><title>Scaling properties of topologically random channel networks</title><title>Journal of hydrology (Amsterdam)</title><description>The analysis deals with the scaling properties of infinite topologically random channel networks (ITRNs) fast introduced by Shreve (1967,
J. Geol., 75: 179–186) to model the branching structure of rivers as a random process. The expected configuration of ITRNs displays scaling behaviour only asymptotically, when the ruler (or ‘yardstick’) length is reduced to a very small extent. The random model can also reproduce scaling behaviour at larger ruler lengths if network magnitude and diameter are functionally related according to a reported deterministic rule. This indicates that subsets of rrRNs can be scaling and, although rrRNs are asymptotically plane-filling due to the law of large numbers, scaling ITRNs can also display fractional dimension.</description><subject>Freshwater</subject><subject>mathematics and statistics</subject><subject>natural resources</subject><subject>water management</subject><subject>water resources</subject><issn>0022-1694</issn><issn>1879-2707</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhoMoWD9-grgn0cNqJtl84UFE_IKCh-o5xOxsjW43Ndkq_fduW_HqXOYwz8y8PIQcAT0HCvJiQiljJUhTnRp5Rjk1otRbZARamZIpqrbJ6A_ZJXs5v9OhOK9G5HLiXRu6aTFPcY6pD5iL2BR9nMc2TsMwbJdFcl0dZ4V_c12HbdFh_x3TRz4gO41rMx7-9n3ycnf7fPNQjp_uH2-ux6WrQPYlGMVqpjnTzmDd1I0RqDw00jivhEFkoJQS2mgnXnklGasNOP3KQXoNuuL75GRzd8j4ucDc21nIHtvWdRgX2YLQoCiw_0Euuaj4ChQb0KeYc8LGzlOYubS0QO3KqV07tSth1ki7dmr1sHe82WtctG6aQrYvE0aBUxB8ML3KerUhcBDyFTDZ7AN2HuuQ0Pe2juGfHz8PBIaA</recordid><startdate>19961201</startdate><enddate>19961201</enddate><creator>Agnese, Carmelo</creator><creator>D'Asaro, Francesco</creator><creator>Grossi, Giovanna</creator><creator>Rosso, Renzo</creator><general>Elsevier B.V</general><scope>FBQ</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope></search><sort><creationdate>19961201</creationdate><title>Scaling properties of topologically random channel networks</title><author>Agnese, Carmelo ; D'Asaro, Francesco ; Grossi, Giovanna ; Rosso, Renzo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a416t-1972d28328a9edfdf95e7c1f69ac759ee217775898a5b34622d91a8b316c81843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Freshwater</topic><topic>mathematics and statistics</topic><topic>natural resources</topic><topic>water management</topic><topic>water resources</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Agnese, Carmelo</creatorcontrib><creatorcontrib>D'Asaro, Francesco</creatorcontrib><creatorcontrib>Grossi, Giovanna</creatorcontrib><creatorcontrib>Rosso, Renzo</creatorcontrib><collection>AGRIS</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><jtitle>Journal of hydrology (Amsterdam)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Agnese, Carmelo</au><au>D'Asaro, Francesco</au><au>Grossi, Giovanna</au><au>Rosso, Renzo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Scaling properties of topologically random channel networks</atitle><jtitle>Journal of hydrology (Amsterdam)</jtitle><date>1996-12-01</date><risdate>1996</risdate><volume>187</volume><issue>1</issue><spage>183</spage><epage>193</epage><pages>183-193</pages><issn>0022-1694</issn><eissn>1879-2707</eissn><abstract>The analysis deals with the scaling properties of infinite topologically random channel networks (ITRNs) fast introduced by Shreve (1967,
J. Geol., 75: 179–186) to model the branching structure of rivers as a random process. The expected configuration of ITRNs displays scaling behaviour only asymptotically, when the ruler (or ‘yardstick’) length is reduced to a very small extent. The random model can also reproduce scaling behaviour at larger ruler lengths if network magnitude and diameter are functionally related according to a reported deterministic rule. This indicates that subsets of rrRNs can be scaling and, although rrRNs are asymptotically plane-filling due to the law of large numbers, scaling ITRNs can also display fractional dimension.</abstract><pub>Elsevier B.V</pub><doi>10.1016/S0022-1694(96)03095-8</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1694 |
ispartof | Journal of hydrology (Amsterdam), 1996-12, Vol.187 (1), p.183-193 |
issn | 0022-1694 1879-2707 |
language | eng |
recordid | cdi_proquest_miscellaneous_15817012 |
source | Access via ScienceDirect (Elsevier) |
subjects | Freshwater mathematics and statistics natural resources water management water resources |
title | Scaling properties of topologically random channel networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T15%3A27%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Scaling%20properties%20of%20topologically%20random%20channel%20networks&rft.jtitle=Journal%20of%20hydrology%20(Amsterdam)&rft.au=Agnese,%20Carmelo&rft.date=1996-12-01&rft.volume=187&rft.issue=1&rft.spage=183&rft.epage=193&rft.pages=183-193&rft.issn=0022-1694&rft.eissn=1879-2707&rft_id=info:doi/10.1016/S0022-1694(96)03095-8&rft_dat=%3Cproquest_cross%3E13635432%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=13635432&rft_id=info:pmid/&rft_els_id=S0022169496030958&rfr_iscdi=true |