The role of apolipoprotein AI domains in lipid binding

Apolipoprotein AI (apoAI) is the principal protein constituent of high density lipoproteins and it plays a key role in human cholesterol homeostasis; however, the structure of apoAI is not clearly understood. To test the hypothesis that apoAI is organized into domains, three deletion mutants of huma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 1996-11, Vol.93 (24), p.13605-13610
Hauptverfasser: Davidson, W. Sean, Hazlett, Theodore, Mantulin, William W., Jonas, Ana
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13610
container_issue 24
container_start_page 13605
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 93
creator Davidson, W. Sean
Hazlett, Theodore
Mantulin, William W.
Jonas, Ana
description Apolipoprotein AI (apoAI) is the principal protein constituent of high density lipoproteins and it plays a key role in human cholesterol homeostasis; however, the structure of apoAI is not clearly understood. To test the hypothesis that apoAI is organized into domains, three deletion mutants of human apoAI expressed in Escherichia coli were studied in solution and in reconstituted high density lipoprotein particles. Each mutant lacked one of three specific regions that together encompass almost the entire 243 aa sequence of native apoAI (apoAI delta 44-126, apoAI delta 139-170, and apoAI delta 190-243). Circular dichroism spectroscopy showed that the alpha-helical content of lipid-free apoAI delta 44-126 was 27% while the other mutants and native apoAI averaged 55 +/- 2%, suggesting that the missing N-terminal portion contains most of the alpha-helical structure of lipid-free apoAI. ApoAI delta 44-126 exhibited the largest increase in alpha-helix upon lipid binding (125% increase versus an average of 25% for the others), confirming the importance of the C-terminal half of apoAI in lipid binding. Denaturation studies showed that the N-terminal half of apoAI is primarily responsible for alpha-helix stability in the lipid-free state, whereas the C terminus is required for alpha-helix stability when lipid-bound. We conclude that the N-terminal half (aa 44-126) of apoAI is responsible for most of the alpha-helical structure and the marginal stability of lipid-free apoAI while the C terminus (aa 139-243) is less organized. The increase in alpha-helical content observed when native apoAI binds lipid results from the formation of alpha-helix primarily in the C-terminal half of the molecule.
doi_str_mv 10.1073/pnas.93.24.13605
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_15809765</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>40947</jstor_id><sourcerecordid>40947</sourcerecordid><originalsourceid>FETCH-LOGICAL-c612t-50ee60c6a818fb82a56e41959a7f7621dfcbca2f4c72a0d5333675f182ddf9f53</originalsourceid><addsrcrecordid>eNqFkc1rFDEYh4Moda3eRdAOHsTLrG--E_BSih-Fggfbc8jOJNsss8mYzIj-92a762I96CmE5_m9JO8PoecYlhgkfTdGW5aaLglbYiqAP0ALDBq3gml4iBYARLaKEfYYPSllAwCaKzhBJ0ozohVeIHF965qcBtck39gxDWFMY06TC7E5v2z6tLUhlqbeKgl9swqxD3H9FD3ydiju2eE8RTcfP1xffG6vvny6vDi_ajuBydRycE5AJ6zCyq8UsVw4hjXXVnopCO59t-os8ayTxELPKaVCco8V6XuvPaen6P1-7jivtq7vXJyyHcyYw9bmnybZYO6TGG7NOn03WFOxi785xHP6NrsymW0onRsGG12ai5GKS0WE_q-I69q0vJv4-i9xk-Yc6w4MAUxBCSmqBHupy6mU7PzxwRjMrjez681oaggzd73VyMs_P3oMHIqq_OzAd8nf9P6Et_82jJ-HYXI_pqq-2KubMqV8dBloJit8tYfeJmPXORRz8xVrLQEkJgzoL8_pvbk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201308676</pqid></control><display><type>article</type><title>The role of apolipoprotein AI domains in lipid binding</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Davidson, W. Sean ; Hazlett, Theodore ; Mantulin, William W. ; Jonas, Ana</creator><creatorcontrib>Davidson, W. Sean ; Hazlett, Theodore ; Mantulin, William W. ; Jonas, Ana ; University of Illinois, Urbana, IL ; CALDIA Study Group (New Caledonia)</creatorcontrib><description>Apolipoprotein AI (apoAI) is the principal protein constituent of high density lipoproteins and it plays a key role in human cholesterol homeostasis; however, the structure of apoAI is not clearly understood. To test the hypothesis that apoAI is organized into domains, three deletion mutants of human apoAI expressed in Escherichia coli were studied in solution and in reconstituted high density lipoprotein particles. Each mutant lacked one of three specific regions that together encompass almost the entire 243 aa sequence of native apoAI (apoAI delta 44-126, apoAI delta 139-170, and apoAI delta 190-243). Circular dichroism spectroscopy showed that the alpha-helical content of lipid-free apoAI delta 44-126 was 27% while the other mutants and native apoAI averaged 55 +/- 2%, suggesting that the missing N-terminal portion contains most of the alpha-helical structure of lipid-free apoAI. ApoAI delta 44-126 exhibited the largest increase in alpha-helix upon lipid binding (125% increase versus an average of 25% for the others), confirming the importance of the C-terminal half of apoAI in lipid binding. Denaturation studies showed that the N-terminal half of apoAI is primarily responsible for alpha-helix stability in the lipid-free state, whereas the C terminus is required for alpha-helix stability when lipid-bound. We conclude that the N-terminal half (aa 44-126) of apoAI is responsible for most of the alpha-helical structure and the marginal stability of lipid-free apoAI while the C terminus (aa 139-243) is less organized. The increase in alpha-helical content observed when native apoAI binds lipid results from the formation of alpha-helix primarily in the C-terminal half of the molecule.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.93.24.13605</identifier><identifier>PMID: 8942981</identifier><language>eng</language><publisher>United States: National Academy of Sciences of the United States of America</publisher><subject>Apolipoprotein A-I - blood ; Apolipoprotein A-I - chemistry ; Binding Sites ; Biochemistry ; Biological Sciences ; cholesterol ; Circular Dichroism ; Cloning, Molecular ; colesterol ; Composite particles ; Escherichia coli ; Fluorescence ; fosfolipidos ; Gels ; genero humano ; genre humain ; Guanidine ; Guanidines ; HDL lipoproteins ; Humans ; lecithine ; lecithins ; lecitinas ; Lipids ; lipoproteinas ; lipoproteine ; lipoproteins ; mankind ; Molecular biology ; Molecules ; Monomers ; Mutagenesis, Site-Directed ; mutant ; mutantes ; mutants ; Mutation ; phosphatide ; phospholipids ; Protein Conformation ; Protein Denaturation ; Protein Structure, Secondary ; proteinas ; proteine ; Proteins ; Recombinant Proteins - chemistry ; Recombinant Proteins - metabolism ; Sequence Deletion ; Spectroscopy</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 1996-11, Vol.93 (24), p.13605-13610</ispartof><rights>Copyright 1996 National Academy of Sciences</rights><rights>Copyright National Academy of Sciences Nov 26, 1996</rights><rights>Copyright © 1996, The National Academy of Sciences of the USA 1996</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c612t-50ee60c6a818fb82a56e41959a7f7621dfcbca2f4c72a0d5333675f182ddf9f53</citedby><cites>FETCH-LOGICAL-c612t-50ee60c6a818fb82a56e41959a7f7621dfcbca2f4c72a0d5333675f182ddf9f53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/93/24.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/40947$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/40947$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/8942981$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Davidson, W. Sean</creatorcontrib><creatorcontrib>Hazlett, Theodore</creatorcontrib><creatorcontrib>Mantulin, William W.</creatorcontrib><creatorcontrib>Jonas, Ana</creatorcontrib><creatorcontrib>University of Illinois, Urbana, IL</creatorcontrib><creatorcontrib>CALDIA Study Group (New Caledonia)</creatorcontrib><title>The role of apolipoprotein AI domains in lipid binding</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Apolipoprotein AI (apoAI) is the principal protein constituent of high density lipoproteins and it plays a key role in human cholesterol homeostasis; however, the structure of apoAI is not clearly understood. To test the hypothesis that apoAI is organized into domains, three deletion mutants of human apoAI expressed in Escherichia coli were studied in solution and in reconstituted high density lipoprotein particles. Each mutant lacked one of three specific regions that together encompass almost the entire 243 aa sequence of native apoAI (apoAI delta 44-126, apoAI delta 139-170, and apoAI delta 190-243). Circular dichroism spectroscopy showed that the alpha-helical content of lipid-free apoAI delta 44-126 was 27% while the other mutants and native apoAI averaged 55 +/- 2%, suggesting that the missing N-terminal portion contains most of the alpha-helical structure of lipid-free apoAI. ApoAI delta 44-126 exhibited the largest increase in alpha-helix upon lipid binding (125% increase versus an average of 25% for the others), confirming the importance of the C-terminal half of apoAI in lipid binding. Denaturation studies showed that the N-terminal half of apoAI is primarily responsible for alpha-helix stability in the lipid-free state, whereas the C terminus is required for alpha-helix stability when lipid-bound. We conclude that the N-terminal half (aa 44-126) of apoAI is responsible for most of the alpha-helical structure and the marginal stability of lipid-free apoAI while the C terminus (aa 139-243) is less organized. The increase in alpha-helical content observed when native apoAI binds lipid results from the formation of alpha-helix primarily in the C-terminal half of the molecule.</description><subject>Apolipoprotein A-I - blood</subject><subject>Apolipoprotein A-I - chemistry</subject><subject>Binding Sites</subject><subject>Biochemistry</subject><subject>Biological Sciences</subject><subject>cholesterol</subject><subject>Circular Dichroism</subject><subject>Cloning, Molecular</subject><subject>colesterol</subject><subject>Composite particles</subject><subject>Escherichia coli</subject><subject>Fluorescence</subject><subject>fosfolipidos</subject><subject>Gels</subject><subject>genero humano</subject><subject>genre humain</subject><subject>Guanidine</subject><subject>Guanidines</subject><subject>HDL lipoproteins</subject><subject>Humans</subject><subject>lecithine</subject><subject>lecithins</subject><subject>lecitinas</subject><subject>Lipids</subject><subject>lipoproteinas</subject><subject>lipoproteine</subject><subject>lipoproteins</subject><subject>mankind</subject><subject>Molecular biology</subject><subject>Molecules</subject><subject>Monomers</subject><subject>Mutagenesis, Site-Directed</subject><subject>mutant</subject><subject>mutantes</subject><subject>mutants</subject><subject>Mutation</subject><subject>phosphatide</subject><subject>phospholipids</subject><subject>Protein Conformation</subject><subject>Protein Denaturation</subject><subject>Protein Structure, Secondary</subject><subject>proteinas</subject><subject>proteine</subject><subject>Proteins</subject><subject>Recombinant Proteins - chemistry</subject><subject>Recombinant Proteins - metabolism</subject><subject>Sequence Deletion</subject><subject>Spectroscopy</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1rFDEYh4Moda3eRdAOHsTLrG--E_BSih-Fggfbc8jOJNsss8mYzIj-92a762I96CmE5_m9JO8PoecYlhgkfTdGW5aaLglbYiqAP0ALDBq3gml4iBYARLaKEfYYPSllAwCaKzhBJ0ozohVeIHF965qcBtck39gxDWFMY06TC7E5v2z6tLUhlqbeKgl9swqxD3H9FD3ydiju2eE8RTcfP1xffG6vvny6vDi_ajuBydRycE5AJ6zCyq8UsVw4hjXXVnopCO59t-os8ayTxELPKaVCco8V6XuvPaen6P1-7jivtq7vXJyyHcyYw9bmnybZYO6TGG7NOn03WFOxi785xHP6NrsymW0onRsGG12ai5GKS0WE_q-I69q0vJv4-i9xk-Yc6w4MAUxBCSmqBHupy6mU7PzxwRjMrjez681oaggzd73VyMs_P3oMHIqq_OzAd8nf9P6Et_82jJ-HYXI_pqq-2KubMqV8dBloJit8tYfeJmPXORRz8xVrLQEkJgzoL8_pvbk</recordid><startdate>19961126</startdate><enddate>19961126</enddate><creator>Davidson, W. Sean</creator><creator>Hazlett, Theodore</creator><creator>Mantulin, William W.</creator><creator>Jonas, Ana</creator><general>National Academy of Sciences of the United States of America</general><general>National Acad Sciences</general><general>National Academy of Sciences</general><general>The National Academy of Sciences of the USA</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>19961126</creationdate><title>The role of apolipoprotein AI domains in lipid binding</title><author>Davidson, W. Sean ; Hazlett, Theodore ; Mantulin, William W. ; Jonas, Ana</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c612t-50ee60c6a818fb82a56e41959a7f7621dfcbca2f4c72a0d5333675f182ddf9f53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Apolipoprotein A-I - blood</topic><topic>Apolipoprotein A-I - chemistry</topic><topic>Binding Sites</topic><topic>Biochemistry</topic><topic>Biological Sciences</topic><topic>cholesterol</topic><topic>Circular Dichroism</topic><topic>Cloning, Molecular</topic><topic>colesterol</topic><topic>Composite particles</topic><topic>Escherichia coli</topic><topic>Fluorescence</topic><topic>fosfolipidos</topic><topic>Gels</topic><topic>genero humano</topic><topic>genre humain</topic><topic>Guanidine</topic><topic>Guanidines</topic><topic>HDL lipoproteins</topic><topic>Humans</topic><topic>lecithine</topic><topic>lecithins</topic><topic>lecitinas</topic><topic>Lipids</topic><topic>lipoproteinas</topic><topic>lipoproteine</topic><topic>lipoproteins</topic><topic>mankind</topic><topic>Molecular biology</topic><topic>Molecules</topic><topic>Monomers</topic><topic>Mutagenesis, Site-Directed</topic><topic>mutant</topic><topic>mutantes</topic><topic>mutants</topic><topic>Mutation</topic><topic>phosphatide</topic><topic>phospholipids</topic><topic>Protein Conformation</topic><topic>Protein Denaturation</topic><topic>Protein Structure, Secondary</topic><topic>proteinas</topic><topic>proteine</topic><topic>Proteins</topic><topic>Recombinant Proteins - chemistry</topic><topic>Recombinant Proteins - metabolism</topic><topic>Sequence Deletion</topic><topic>Spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Davidson, W. Sean</creatorcontrib><creatorcontrib>Hazlett, Theodore</creatorcontrib><creatorcontrib>Mantulin, William W.</creatorcontrib><creatorcontrib>Jonas, Ana</creatorcontrib><creatorcontrib>University of Illinois, Urbana, IL</creatorcontrib><creatorcontrib>CALDIA Study Group (New Caledonia)</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Davidson, W. Sean</au><au>Hazlett, Theodore</au><au>Mantulin, William W.</au><au>Jonas, Ana</au><aucorp>University of Illinois, Urbana, IL</aucorp><aucorp>CALDIA Study Group (New Caledonia)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The role of apolipoprotein AI domains in lipid binding</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>1996-11-26</date><risdate>1996</risdate><volume>93</volume><issue>24</issue><spage>13605</spage><epage>13610</epage><pages>13605-13610</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Apolipoprotein AI (apoAI) is the principal protein constituent of high density lipoproteins and it plays a key role in human cholesterol homeostasis; however, the structure of apoAI is not clearly understood. To test the hypothesis that apoAI is organized into domains, three deletion mutants of human apoAI expressed in Escherichia coli were studied in solution and in reconstituted high density lipoprotein particles. Each mutant lacked one of three specific regions that together encompass almost the entire 243 aa sequence of native apoAI (apoAI delta 44-126, apoAI delta 139-170, and apoAI delta 190-243). Circular dichroism spectroscopy showed that the alpha-helical content of lipid-free apoAI delta 44-126 was 27% while the other mutants and native apoAI averaged 55 +/- 2%, suggesting that the missing N-terminal portion contains most of the alpha-helical structure of lipid-free apoAI. ApoAI delta 44-126 exhibited the largest increase in alpha-helix upon lipid binding (125% increase versus an average of 25% for the others), confirming the importance of the C-terminal half of apoAI in lipid binding. Denaturation studies showed that the N-terminal half of apoAI is primarily responsible for alpha-helix stability in the lipid-free state, whereas the C terminus is required for alpha-helix stability when lipid-bound. We conclude that the N-terminal half (aa 44-126) of apoAI is responsible for most of the alpha-helical structure and the marginal stability of lipid-free apoAI while the C terminus (aa 139-243) is less organized. The increase in alpha-helical content observed when native apoAI binds lipid results from the formation of alpha-helix primarily in the C-terminal half of the molecule.</abstract><cop>United States</cop><pub>National Academy of Sciences of the United States of America</pub><pmid>8942981</pmid><doi>10.1073/pnas.93.24.13605</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 1996-11, Vol.93 (24), p.13605-13610
issn 0027-8424
1091-6490
language eng
recordid cdi_proquest_miscellaneous_15809765
source Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Apolipoprotein A-I - blood
Apolipoprotein A-I - chemistry
Binding Sites
Biochemistry
Biological Sciences
cholesterol
Circular Dichroism
Cloning, Molecular
colesterol
Composite particles
Escherichia coli
Fluorescence
fosfolipidos
Gels
genero humano
genre humain
Guanidine
Guanidines
HDL lipoproteins
Humans
lecithine
lecithins
lecitinas
Lipids
lipoproteinas
lipoproteine
lipoproteins
mankind
Molecular biology
Molecules
Monomers
Mutagenesis, Site-Directed
mutant
mutantes
mutants
Mutation
phosphatide
phospholipids
Protein Conformation
Protein Denaturation
Protein Structure, Secondary
proteinas
proteine
Proteins
Recombinant Proteins - chemistry
Recombinant Proteins - metabolism
Sequence Deletion
Spectroscopy
title The role of apolipoprotein AI domains in lipid binding
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T18%3A30%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20role%20of%20apolipoprotein%20AI%20domains%20in%20lipid%20binding&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Davidson,%20W.%20Sean&rft.aucorp=University%20of%20Illinois,%20Urbana,%20IL&rft.date=1996-11-26&rft.volume=93&rft.issue=24&rft.spage=13605&rft.epage=13610&rft.pages=13605-13610&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.93.24.13605&rft_dat=%3Cjstor_proqu%3E40947%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201308676&rft_id=info:pmid/8942981&rft_jstor_id=40947&rfr_iscdi=true