The role of apolipoprotein AI domains in lipid binding
Apolipoprotein AI (apoAI) is the principal protein constituent of high density lipoproteins and it plays a key role in human cholesterol homeostasis; however, the structure of apoAI is not clearly understood. To test the hypothesis that apoAI is organized into domains, three deletion mutants of huma...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 1996-11, Vol.93 (24), p.13605-13610 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 13610 |
---|---|
container_issue | 24 |
container_start_page | 13605 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 93 |
creator | Davidson, W. Sean Hazlett, Theodore Mantulin, William W. Jonas, Ana |
description | Apolipoprotein AI (apoAI) is the principal protein constituent of high density lipoproteins and it plays a key role in human cholesterol homeostasis; however, the structure of apoAI is not clearly understood. To test the hypothesis that apoAI is organized into domains, three deletion mutants of human apoAI expressed in Escherichia coli were studied in solution and in reconstituted high density lipoprotein particles. Each mutant lacked one of three specific regions that together encompass almost the entire 243 aa sequence of native apoAI (apoAI delta 44-126, apoAI delta 139-170, and apoAI delta 190-243). Circular dichroism spectroscopy showed that the alpha-helical content of lipid-free apoAI delta 44-126 was 27% while the other mutants and native apoAI averaged 55 +/- 2%, suggesting that the missing N-terminal portion contains most of the alpha-helical structure of lipid-free apoAI. ApoAI delta 44-126 exhibited the largest increase in alpha-helix upon lipid binding (125% increase versus an average of 25% for the others), confirming the importance of the C-terminal half of apoAI in lipid binding. Denaturation studies showed that the N-terminal half of apoAI is primarily responsible for alpha-helix stability in the lipid-free state, whereas the C terminus is required for alpha-helix stability when lipid-bound. We conclude that the N-terminal half (aa 44-126) of apoAI is responsible for most of the alpha-helical structure and the marginal stability of lipid-free apoAI while the C terminus (aa 139-243) is less organized. The increase in alpha-helical content observed when native apoAI binds lipid results from the formation of alpha-helix primarily in the C-terminal half of the molecule. |
doi_str_mv | 10.1073/pnas.93.24.13605 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_15809765</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>40947</jstor_id><sourcerecordid>40947</sourcerecordid><originalsourceid>FETCH-LOGICAL-c612t-50ee60c6a818fb82a56e41959a7f7621dfcbca2f4c72a0d5333675f182ddf9f53</originalsourceid><addsrcrecordid>eNqFkc1rFDEYh4Moda3eRdAOHsTLrG--E_BSih-Fggfbc8jOJNsss8mYzIj-92a762I96CmE5_m9JO8PoecYlhgkfTdGW5aaLglbYiqAP0ALDBq3gml4iBYARLaKEfYYPSllAwCaKzhBJ0ozohVeIHF965qcBtck39gxDWFMY06TC7E5v2z6tLUhlqbeKgl9swqxD3H9FD3ydiju2eE8RTcfP1xffG6vvny6vDi_ajuBydRycE5AJ6zCyq8UsVw4hjXXVnopCO59t-os8ayTxELPKaVCco8V6XuvPaen6P1-7jivtq7vXJyyHcyYw9bmnybZYO6TGG7NOn03WFOxi785xHP6NrsymW0onRsGG12ai5GKS0WE_q-I69q0vJv4-i9xk-Yc6w4MAUxBCSmqBHupy6mU7PzxwRjMrjez681oaggzd73VyMs_P3oMHIqq_OzAd8nf9P6Et_82jJ-HYXI_pqq-2KubMqV8dBloJit8tYfeJmPXORRz8xVrLQEkJgzoL8_pvbk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201308676</pqid></control><display><type>article</type><title>The role of apolipoprotein AI domains in lipid binding</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Davidson, W. Sean ; Hazlett, Theodore ; Mantulin, William W. ; Jonas, Ana</creator><creatorcontrib>Davidson, W. Sean ; Hazlett, Theodore ; Mantulin, William W. ; Jonas, Ana ; University of Illinois, Urbana, IL ; CALDIA Study Group (New Caledonia)</creatorcontrib><description>Apolipoprotein AI (apoAI) is the principal protein constituent of high density lipoproteins and it plays a key role in human cholesterol homeostasis; however, the structure of apoAI is not clearly understood. To test the hypothesis that apoAI is organized into domains, three deletion mutants of human apoAI expressed in Escherichia coli were studied in solution and in reconstituted high density lipoprotein particles. Each mutant lacked one of three specific regions that together encompass almost the entire 243 aa sequence of native apoAI (apoAI delta 44-126, apoAI delta 139-170, and apoAI delta 190-243). Circular dichroism spectroscopy showed that the alpha-helical content of lipid-free apoAI delta 44-126 was 27% while the other mutants and native apoAI averaged 55 +/- 2%, suggesting that the missing N-terminal portion contains most of the alpha-helical structure of lipid-free apoAI. ApoAI delta 44-126 exhibited the largest increase in alpha-helix upon lipid binding (125% increase versus an average of 25% for the others), confirming the importance of the C-terminal half of apoAI in lipid binding. Denaturation studies showed that the N-terminal half of apoAI is primarily responsible for alpha-helix stability in the lipid-free state, whereas the C terminus is required for alpha-helix stability when lipid-bound. We conclude that the N-terminal half (aa 44-126) of apoAI is responsible for most of the alpha-helical structure and the marginal stability of lipid-free apoAI while the C terminus (aa 139-243) is less organized. The increase in alpha-helical content observed when native apoAI binds lipid results from the formation of alpha-helix primarily in the C-terminal half of the molecule.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.93.24.13605</identifier><identifier>PMID: 8942981</identifier><language>eng</language><publisher>United States: National Academy of Sciences of the United States of America</publisher><subject>Apolipoprotein A-I - blood ; Apolipoprotein A-I - chemistry ; Binding Sites ; Biochemistry ; Biological Sciences ; cholesterol ; Circular Dichroism ; Cloning, Molecular ; colesterol ; Composite particles ; Escherichia coli ; Fluorescence ; fosfolipidos ; Gels ; genero humano ; genre humain ; Guanidine ; Guanidines ; HDL lipoproteins ; Humans ; lecithine ; lecithins ; lecitinas ; Lipids ; lipoproteinas ; lipoproteine ; lipoproteins ; mankind ; Molecular biology ; Molecules ; Monomers ; Mutagenesis, Site-Directed ; mutant ; mutantes ; mutants ; Mutation ; phosphatide ; phospholipids ; Protein Conformation ; Protein Denaturation ; Protein Structure, Secondary ; proteinas ; proteine ; Proteins ; Recombinant Proteins - chemistry ; Recombinant Proteins - metabolism ; Sequence Deletion ; Spectroscopy</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 1996-11, Vol.93 (24), p.13605-13610</ispartof><rights>Copyright 1996 National Academy of Sciences</rights><rights>Copyright National Academy of Sciences Nov 26, 1996</rights><rights>Copyright © 1996, The National Academy of Sciences of the USA 1996</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c612t-50ee60c6a818fb82a56e41959a7f7621dfcbca2f4c72a0d5333675f182ddf9f53</citedby><cites>FETCH-LOGICAL-c612t-50ee60c6a818fb82a56e41959a7f7621dfcbca2f4c72a0d5333675f182ddf9f53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/93/24.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/40947$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/40947$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/8942981$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Davidson, W. Sean</creatorcontrib><creatorcontrib>Hazlett, Theodore</creatorcontrib><creatorcontrib>Mantulin, William W.</creatorcontrib><creatorcontrib>Jonas, Ana</creatorcontrib><creatorcontrib>University of Illinois, Urbana, IL</creatorcontrib><creatorcontrib>CALDIA Study Group (New Caledonia)</creatorcontrib><title>The role of apolipoprotein AI domains in lipid binding</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Apolipoprotein AI (apoAI) is the principal protein constituent of high density lipoproteins and it plays a key role in human cholesterol homeostasis; however, the structure of apoAI is not clearly understood. To test the hypothesis that apoAI is organized into domains, three deletion mutants of human apoAI expressed in Escherichia coli were studied in solution and in reconstituted high density lipoprotein particles. Each mutant lacked one of three specific regions that together encompass almost the entire 243 aa sequence of native apoAI (apoAI delta 44-126, apoAI delta 139-170, and apoAI delta 190-243). Circular dichroism spectroscopy showed that the alpha-helical content of lipid-free apoAI delta 44-126 was 27% while the other mutants and native apoAI averaged 55 +/- 2%, suggesting that the missing N-terminal portion contains most of the alpha-helical structure of lipid-free apoAI. ApoAI delta 44-126 exhibited the largest increase in alpha-helix upon lipid binding (125% increase versus an average of 25% for the others), confirming the importance of the C-terminal half of apoAI in lipid binding. Denaturation studies showed that the N-terminal half of apoAI is primarily responsible for alpha-helix stability in the lipid-free state, whereas the C terminus is required for alpha-helix stability when lipid-bound. We conclude that the N-terminal half (aa 44-126) of apoAI is responsible for most of the alpha-helical structure and the marginal stability of lipid-free apoAI while the C terminus (aa 139-243) is less organized. The increase in alpha-helical content observed when native apoAI binds lipid results from the formation of alpha-helix primarily in the C-terminal half of the molecule.</description><subject>Apolipoprotein A-I - blood</subject><subject>Apolipoprotein A-I - chemistry</subject><subject>Binding Sites</subject><subject>Biochemistry</subject><subject>Biological Sciences</subject><subject>cholesterol</subject><subject>Circular Dichroism</subject><subject>Cloning, Molecular</subject><subject>colesterol</subject><subject>Composite particles</subject><subject>Escherichia coli</subject><subject>Fluorescence</subject><subject>fosfolipidos</subject><subject>Gels</subject><subject>genero humano</subject><subject>genre humain</subject><subject>Guanidine</subject><subject>Guanidines</subject><subject>HDL lipoproteins</subject><subject>Humans</subject><subject>lecithine</subject><subject>lecithins</subject><subject>lecitinas</subject><subject>Lipids</subject><subject>lipoproteinas</subject><subject>lipoproteine</subject><subject>lipoproteins</subject><subject>mankind</subject><subject>Molecular biology</subject><subject>Molecules</subject><subject>Monomers</subject><subject>Mutagenesis, Site-Directed</subject><subject>mutant</subject><subject>mutantes</subject><subject>mutants</subject><subject>Mutation</subject><subject>phosphatide</subject><subject>phospholipids</subject><subject>Protein Conformation</subject><subject>Protein Denaturation</subject><subject>Protein Structure, Secondary</subject><subject>proteinas</subject><subject>proteine</subject><subject>Proteins</subject><subject>Recombinant Proteins - chemistry</subject><subject>Recombinant Proteins - metabolism</subject><subject>Sequence Deletion</subject><subject>Spectroscopy</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1rFDEYh4Moda3eRdAOHsTLrG--E_BSih-Fggfbc8jOJNsss8mYzIj-92a762I96CmE5_m9JO8PoecYlhgkfTdGW5aaLglbYiqAP0ALDBq3gml4iBYARLaKEfYYPSllAwCaKzhBJ0ozohVeIHF965qcBtck39gxDWFMY06TC7E5v2z6tLUhlqbeKgl9swqxD3H9FD3ydiju2eE8RTcfP1xffG6vvny6vDi_ajuBydRycE5AJ6zCyq8UsVw4hjXXVnopCO59t-os8ayTxELPKaVCco8V6XuvPaen6P1-7jivtq7vXJyyHcyYw9bmnybZYO6TGG7NOn03WFOxi785xHP6NrsymW0onRsGG12ai5GKS0WE_q-I69q0vJv4-i9xk-Yc6w4MAUxBCSmqBHupy6mU7PzxwRjMrjez681oaggzd73VyMs_P3oMHIqq_OzAd8nf9P6Et_82jJ-HYXI_pqq-2KubMqV8dBloJit8tYfeJmPXORRz8xVrLQEkJgzoL8_pvbk</recordid><startdate>19961126</startdate><enddate>19961126</enddate><creator>Davidson, W. Sean</creator><creator>Hazlett, Theodore</creator><creator>Mantulin, William W.</creator><creator>Jonas, Ana</creator><general>National Academy of Sciences of the United States of America</general><general>National Acad Sciences</general><general>National Academy of Sciences</general><general>The National Academy of Sciences of the USA</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>19961126</creationdate><title>The role of apolipoprotein AI domains in lipid binding</title><author>Davidson, W. Sean ; Hazlett, Theodore ; Mantulin, William W. ; Jonas, Ana</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c612t-50ee60c6a818fb82a56e41959a7f7621dfcbca2f4c72a0d5333675f182ddf9f53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Apolipoprotein A-I - blood</topic><topic>Apolipoprotein A-I - chemistry</topic><topic>Binding Sites</topic><topic>Biochemistry</topic><topic>Biological Sciences</topic><topic>cholesterol</topic><topic>Circular Dichroism</topic><topic>Cloning, Molecular</topic><topic>colesterol</topic><topic>Composite particles</topic><topic>Escherichia coli</topic><topic>Fluorescence</topic><topic>fosfolipidos</topic><topic>Gels</topic><topic>genero humano</topic><topic>genre humain</topic><topic>Guanidine</topic><topic>Guanidines</topic><topic>HDL lipoproteins</topic><topic>Humans</topic><topic>lecithine</topic><topic>lecithins</topic><topic>lecitinas</topic><topic>Lipids</topic><topic>lipoproteinas</topic><topic>lipoproteine</topic><topic>lipoproteins</topic><topic>mankind</topic><topic>Molecular biology</topic><topic>Molecules</topic><topic>Monomers</topic><topic>Mutagenesis, Site-Directed</topic><topic>mutant</topic><topic>mutantes</topic><topic>mutants</topic><topic>Mutation</topic><topic>phosphatide</topic><topic>phospholipids</topic><topic>Protein Conformation</topic><topic>Protein Denaturation</topic><topic>Protein Structure, Secondary</topic><topic>proteinas</topic><topic>proteine</topic><topic>Proteins</topic><topic>Recombinant Proteins - chemistry</topic><topic>Recombinant Proteins - metabolism</topic><topic>Sequence Deletion</topic><topic>Spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Davidson, W. Sean</creatorcontrib><creatorcontrib>Hazlett, Theodore</creatorcontrib><creatorcontrib>Mantulin, William W.</creatorcontrib><creatorcontrib>Jonas, Ana</creatorcontrib><creatorcontrib>University of Illinois, Urbana, IL</creatorcontrib><creatorcontrib>CALDIA Study Group (New Caledonia)</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Davidson, W. Sean</au><au>Hazlett, Theodore</au><au>Mantulin, William W.</au><au>Jonas, Ana</au><aucorp>University of Illinois, Urbana, IL</aucorp><aucorp>CALDIA Study Group (New Caledonia)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The role of apolipoprotein AI domains in lipid binding</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>1996-11-26</date><risdate>1996</risdate><volume>93</volume><issue>24</issue><spage>13605</spage><epage>13610</epage><pages>13605-13610</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Apolipoprotein AI (apoAI) is the principal protein constituent of high density lipoproteins and it plays a key role in human cholesterol homeostasis; however, the structure of apoAI is not clearly understood. To test the hypothesis that apoAI is organized into domains, three deletion mutants of human apoAI expressed in Escherichia coli were studied in solution and in reconstituted high density lipoprotein particles. Each mutant lacked one of three specific regions that together encompass almost the entire 243 aa sequence of native apoAI (apoAI delta 44-126, apoAI delta 139-170, and apoAI delta 190-243). Circular dichroism spectroscopy showed that the alpha-helical content of lipid-free apoAI delta 44-126 was 27% while the other mutants and native apoAI averaged 55 +/- 2%, suggesting that the missing N-terminal portion contains most of the alpha-helical structure of lipid-free apoAI. ApoAI delta 44-126 exhibited the largest increase in alpha-helix upon lipid binding (125% increase versus an average of 25% for the others), confirming the importance of the C-terminal half of apoAI in lipid binding. Denaturation studies showed that the N-terminal half of apoAI is primarily responsible for alpha-helix stability in the lipid-free state, whereas the C terminus is required for alpha-helix stability when lipid-bound. We conclude that the N-terminal half (aa 44-126) of apoAI is responsible for most of the alpha-helical structure and the marginal stability of lipid-free apoAI while the C terminus (aa 139-243) is less organized. The increase in alpha-helical content observed when native apoAI binds lipid results from the formation of alpha-helix primarily in the C-terminal half of the molecule.</abstract><cop>United States</cop><pub>National Academy of Sciences of the United States of America</pub><pmid>8942981</pmid><doi>10.1073/pnas.93.24.13605</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 1996-11, Vol.93 (24), p.13605-13610 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_proquest_miscellaneous_15809765 |
source | Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Apolipoprotein A-I - blood Apolipoprotein A-I - chemistry Binding Sites Biochemistry Biological Sciences cholesterol Circular Dichroism Cloning, Molecular colesterol Composite particles Escherichia coli Fluorescence fosfolipidos Gels genero humano genre humain Guanidine Guanidines HDL lipoproteins Humans lecithine lecithins lecitinas Lipids lipoproteinas lipoproteine lipoproteins mankind Molecular biology Molecules Monomers Mutagenesis, Site-Directed mutant mutantes mutants Mutation phosphatide phospholipids Protein Conformation Protein Denaturation Protein Structure, Secondary proteinas proteine Proteins Recombinant Proteins - chemistry Recombinant Proteins - metabolism Sequence Deletion Spectroscopy |
title | The role of apolipoprotein AI domains in lipid binding |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T18%3A30%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20role%20of%20apolipoprotein%20AI%20domains%20in%20lipid%20binding&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Davidson,%20W.%20Sean&rft.aucorp=University%20of%20Illinois,%20Urbana,%20IL&rft.date=1996-11-26&rft.volume=93&rft.issue=24&rft.spage=13605&rft.epage=13610&rft.pages=13605-13610&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.93.24.13605&rft_dat=%3Cjstor_proqu%3E40947%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201308676&rft_id=info:pmid/8942981&rft_jstor_id=40947&rfr_iscdi=true |