Gas/Particle Partitioning and Secondary Organic Aerosol Yields

Secondary organic aerosol (SOA) formation is considered in the framework of the gas/particle partitioning absorption model outlined by Pankow ( , ). Expressions for the fractional SOA yield (Y) are developed within this framework and shown to be a function of the organic aerosol mass concentration,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science & technology 1996-08, Vol.30 (8), p.2580-2585
Hauptverfasser: Odum, Jay R, Hoffmann, Thorsten, Bowman, Frank, Collins, Don, Flagan, Richard C, Seinfeld, John H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2585
container_issue 8
container_start_page 2580
container_title Environmental science & technology
container_volume 30
creator Odum, Jay R
Hoffmann, Thorsten
Bowman, Frank
Collins, Don
Flagan, Richard C
Seinfeld, John H
description Secondary organic aerosol (SOA) formation is considered in the framework of the gas/particle partitioning absorption model outlined by Pankow ( , ). Expressions for the fractional SOA yield (Y) are developed within this framework and shown to be a function of the organic aerosol mass concentration, M o. These expressions are applied to over 30 individual reactive organic gas (ROG) photooxidation smog chamber experiments. Analysis of the data from these experiments clearly shows that Y is a strong function of M o and that secondary organic aerosol formation is best described by a gas/particle partitioning absorption model. In addition to the 30 individual ROG experiments, three experiments were performed with ROG mixtures. The expressions developed for Y in terms of M o, used in conjunction with the overall yield data from the individual ROG experiments, are able to account for the M o generated in the ROG mixture experiments. This observation not only suggests that SOA yields for individual ROGs are additive but that smog chamber SOA yield data may be confidently extrapolated to the atmosphere in order to determine the important ambient sources of SOA in the environment.
doi_str_mv 10.1021/es950943+
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_15809468</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>254399</sourcerecordid><originalsourceid>FETCH-LOGICAL-a445t-8ab82a773cbb987a4654ddc0a1cdbb56a696087dab1f527c33ee5e2bbc0acb783</originalsourceid><addsrcrecordid>eNplkFFLwzAUhYMoOKcP_oMiIoLUJU3Tpi_CnLqJk002QX0JN2k6Mrt2Jh3ov7dzcwN9uhfux7nnHISOCb4kOCAt7RKGk5Be7KAGYQH2GWdkFzUwJtRPaPSyjw6cm2KMA4p5A111wbWGYCujcu39LJUpC1NMPChSb6RVWaRgv7yBnUBhlNfWtnRl7r0anafuEO1lkDt9tJ5N9Hx3O-70_P6ge99p930IQ1b5HCQPII6pkjLhMYQRC9NUYSAqlZJFECUR5nEKkmQsiBWlWjMdSFkjSsacNtHZSnduy4-FdpWYGad0nkOhy4UThPE6dbQET_6A03Jhi9qbqAMTSkmS1ND5ClJ1Fmd1JubWzOqUgmCxrFH81lijp2s9cAryzEKhjNvwlHBCyFLRX2HGVfpzcwb7LqKYxkyMhyPRw48310_Bg3jbyoJyW4f_vn8DBdWLXA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>230133199</pqid></control><display><type>article</type><title>Gas/Particle Partitioning and Secondary Organic Aerosol Yields</title><source>American Chemical Society Journals</source><creator>Odum, Jay R ; Hoffmann, Thorsten ; Bowman, Frank ; Collins, Don ; Flagan, Richard C ; Seinfeld, John H</creator><creatorcontrib>Odum, Jay R ; Hoffmann, Thorsten ; Bowman, Frank ; Collins, Don ; Flagan, Richard C ; Seinfeld, John H</creatorcontrib><description>Secondary organic aerosol (SOA) formation is considered in the framework of the gas/particle partitioning absorption model outlined by Pankow ( , ). Expressions for the fractional SOA yield (Y) are developed within this framework and shown to be a function of the organic aerosol mass concentration, M o. These expressions are applied to over 30 individual reactive organic gas (ROG) photooxidation smog chamber experiments. Analysis of the data from these experiments clearly shows that Y is a strong function of M o and that secondary organic aerosol formation is best described by a gas/particle partitioning absorption model. In addition to the 30 individual ROG experiments, three experiments were performed with ROG mixtures. The expressions developed for Y in terms of M o, used in conjunction with the overall yield data from the individual ROG experiments, are able to account for the M o generated in the ROG mixture experiments. This observation not only suggests that SOA yields for individual ROGs are additive but that smog chamber SOA yield data may be confidently extrapolated to the atmosphere in order to determine the important ambient sources of SOA in the environment.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/es950943+</identifier><identifier>CODEN: ESTHAG</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Absorption ; Aerosols ; Air pollution ; Applied sciences ; Atmospheric pollution ; Exact sciences and technology ; Gases ; Mathematical models ; Organic chemistry ; Organic compounds ; Oxidation ; Pollutants physicochemistry study: properties, effects, reactions, transport and distribution ; Pollution ; Q1</subject><ispartof>Environmental science &amp; technology, 1996-08, Vol.30 (8), p.2580-2585</ispartof><rights>Copyright © 1996 American Chemical Society</rights><rights>1996 INIST-CNRS</rights><rights>Copyright American Chemical Society Aug 1996</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a445t-8ab82a773cbb987a4654ddc0a1cdbb56a696087dab1f527c33ee5e2bbc0acb783</citedby><cites>FETCH-LOGICAL-a445t-8ab82a773cbb987a4654ddc0a1cdbb56a696087dab1f527c33ee5e2bbc0acb783</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/es950943+$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/es950943+$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=3181119$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Odum, Jay R</creatorcontrib><creatorcontrib>Hoffmann, Thorsten</creatorcontrib><creatorcontrib>Bowman, Frank</creatorcontrib><creatorcontrib>Collins, Don</creatorcontrib><creatorcontrib>Flagan, Richard C</creatorcontrib><creatorcontrib>Seinfeld, John H</creatorcontrib><title>Gas/Particle Partitioning and Secondary Organic Aerosol Yields</title><title>Environmental science &amp; technology</title><addtitle>Environ. Sci. Technol</addtitle><description>Secondary organic aerosol (SOA) formation is considered in the framework of the gas/particle partitioning absorption model outlined by Pankow ( , ). Expressions for the fractional SOA yield (Y) are developed within this framework and shown to be a function of the organic aerosol mass concentration, M o. These expressions are applied to over 30 individual reactive organic gas (ROG) photooxidation smog chamber experiments. Analysis of the data from these experiments clearly shows that Y is a strong function of M o and that secondary organic aerosol formation is best described by a gas/particle partitioning absorption model. In addition to the 30 individual ROG experiments, three experiments were performed with ROG mixtures. The expressions developed for Y in terms of M o, used in conjunction with the overall yield data from the individual ROG experiments, are able to account for the M o generated in the ROG mixture experiments. This observation not only suggests that SOA yields for individual ROGs are additive but that smog chamber SOA yield data may be confidently extrapolated to the atmosphere in order to determine the important ambient sources of SOA in the environment.</description><subject>Absorption</subject><subject>Aerosols</subject><subject>Air pollution</subject><subject>Applied sciences</subject><subject>Atmospheric pollution</subject><subject>Exact sciences and technology</subject><subject>Gases</subject><subject>Mathematical models</subject><subject>Organic chemistry</subject><subject>Organic compounds</subject><subject>Oxidation</subject><subject>Pollutants physicochemistry study: properties, effects, reactions, transport and distribution</subject><subject>Pollution</subject><subject>Q1</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><recordid>eNplkFFLwzAUhYMoOKcP_oMiIoLUJU3Tpi_CnLqJk002QX0JN2k6Mrt2Jh3ov7dzcwN9uhfux7nnHISOCb4kOCAt7RKGk5Be7KAGYQH2GWdkFzUwJtRPaPSyjw6cm2KMA4p5A111wbWGYCujcu39LJUpC1NMPChSb6RVWaRgv7yBnUBhlNfWtnRl7r0anafuEO1lkDt9tJ5N9Hx3O-70_P6ge99p930IQ1b5HCQPII6pkjLhMYQRC9NUYSAqlZJFECUR5nEKkmQsiBWlWjMdSFkjSsacNtHZSnduy4-FdpWYGad0nkOhy4UThPE6dbQET_6A03Jhi9qbqAMTSkmS1ND5ClJ1Fmd1JubWzOqUgmCxrFH81lijp2s9cAryzEKhjNvwlHBCyFLRX2HGVfpzcwb7LqKYxkyMhyPRw48310_Bg3jbyoJyW4f_vn8DBdWLXA</recordid><startdate>19960801</startdate><enddate>19960801</enddate><creator>Odum, Jay R</creator><creator>Hoffmann, Thorsten</creator><creator>Bowman, Frank</creator><creator>Collins, Don</creator><creator>Flagan, Richard C</creator><creator>Seinfeld, John H</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope></search><sort><creationdate>19960801</creationdate><title>Gas/Particle Partitioning and Secondary Organic Aerosol Yields</title><author>Odum, Jay R ; Hoffmann, Thorsten ; Bowman, Frank ; Collins, Don ; Flagan, Richard C ; Seinfeld, John H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a445t-8ab82a773cbb987a4654ddc0a1cdbb56a696087dab1f527c33ee5e2bbc0acb783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Absorption</topic><topic>Aerosols</topic><topic>Air pollution</topic><topic>Applied sciences</topic><topic>Atmospheric pollution</topic><topic>Exact sciences and technology</topic><topic>Gases</topic><topic>Mathematical models</topic><topic>Organic chemistry</topic><topic>Organic compounds</topic><topic>Oxidation</topic><topic>Pollutants physicochemistry study: properties, effects, reactions, transport and distribution</topic><topic>Pollution</topic><topic>Q1</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Odum, Jay R</creatorcontrib><creatorcontrib>Hoffmann, Thorsten</creatorcontrib><creatorcontrib>Bowman, Frank</creatorcontrib><creatorcontrib>Collins, Don</creatorcontrib><creatorcontrib>Flagan, Richard C</creatorcontrib><creatorcontrib>Seinfeld, John H</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Environmental science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Odum, Jay R</au><au>Hoffmann, Thorsten</au><au>Bowman, Frank</au><au>Collins, Don</au><au>Flagan, Richard C</au><au>Seinfeld, John H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gas/Particle Partitioning and Secondary Organic Aerosol Yields</atitle><jtitle>Environmental science &amp; technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>1996-08-01</date><risdate>1996</risdate><volume>30</volume><issue>8</issue><spage>2580</spage><epage>2585</epage><pages>2580-2585</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><coden>ESTHAG</coden><abstract>Secondary organic aerosol (SOA) formation is considered in the framework of the gas/particle partitioning absorption model outlined by Pankow ( , ). Expressions for the fractional SOA yield (Y) are developed within this framework and shown to be a function of the organic aerosol mass concentration, M o. These expressions are applied to over 30 individual reactive organic gas (ROG) photooxidation smog chamber experiments. Analysis of the data from these experiments clearly shows that Y is a strong function of M o and that secondary organic aerosol formation is best described by a gas/particle partitioning absorption model. In addition to the 30 individual ROG experiments, three experiments were performed with ROG mixtures. The expressions developed for Y in terms of M o, used in conjunction with the overall yield data from the individual ROG experiments, are able to account for the M o generated in the ROG mixture experiments. This observation not only suggests that SOA yields for individual ROGs are additive but that smog chamber SOA yield data may be confidently extrapolated to the atmosphere in order to determine the important ambient sources of SOA in the environment.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><doi>10.1021/es950943+</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0013-936X
ispartof Environmental science & technology, 1996-08, Vol.30 (8), p.2580-2585
issn 0013-936X
1520-5851
language eng
recordid cdi_proquest_miscellaneous_15809468
source American Chemical Society Journals
subjects Absorption
Aerosols
Air pollution
Applied sciences
Atmospheric pollution
Exact sciences and technology
Gases
Mathematical models
Organic chemistry
Organic compounds
Oxidation
Pollutants physicochemistry study: properties, effects, reactions, transport and distribution
Pollution
Q1
title Gas/Particle Partitioning and Secondary Organic Aerosol Yields
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T04%3A43%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gas/Particle%20Partitioning%20and%20Secondary%20Organic%20Aerosol%20Yields&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Odum,%20Jay%20R&rft.date=1996-08-01&rft.volume=30&rft.issue=8&rft.spage=2580&rft.epage=2585&rft.pages=2580-2585&rft.issn=0013-936X&rft.eissn=1520-5851&rft.coden=ESTHAG&rft_id=info:doi/10.1021/es950943+&rft_dat=%3Cproquest_cross%3E254399%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=230133199&rft_id=info:pmid/&rfr_iscdi=true