Gas/Particle Partitioning and Secondary Organic Aerosol Yields
Secondary organic aerosol (SOA) formation is considered in the framework of the gas/particle partitioning absorption model outlined by Pankow ( , ). Expressions for the fractional SOA yield (Y) are developed within this framework and shown to be a function of the organic aerosol mass concentration,...
Gespeichert in:
Veröffentlicht in: | Environmental science & technology 1996-08, Vol.30 (8), p.2580-2585 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2585 |
---|---|
container_issue | 8 |
container_start_page | 2580 |
container_title | Environmental science & technology |
container_volume | 30 |
creator | Odum, Jay R Hoffmann, Thorsten Bowman, Frank Collins, Don Flagan, Richard C Seinfeld, John H |
description | Secondary organic aerosol (SOA) formation is considered in the framework of the gas/particle partitioning absorption model outlined by Pankow ( , ). Expressions for the fractional SOA yield (Y) are developed within this framework and shown to be a function of the organic aerosol mass concentration, M o. These expressions are applied to over 30 individual reactive organic gas (ROG) photooxidation smog chamber experiments. Analysis of the data from these experiments clearly shows that Y is a strong function of M o and that secondary organic aerosol formation is best described by a gas/particle partitioning absorption model. In addition to the 30 individual ROG experiments, three experiments were performed with ROG mixtures. The expressions developed for Y in terms of M o, used in conjunction with the overall yield data from the individual ROG experiments, are able to account for the M o generated in the ROG mixture experiments. This observation not only suggests that SOA yields for individual ROGs are additive but that smog chamber SOA yield data may be confidently extrapolated to the atmosphere in order to determine the important ambient sources of SOA in the environment. |
doi_str_mv | 10.1021/es950943+ |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_15809468</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>254399</sourcerecordid><originalsourceid>FETCH-LOGICAL-a445t-8ab82a773cbb987a4654ddc0a1cdbb56a696087dab1f527c33ee5e2bbc0acb783</originalsourceid><addsrcrecordid>eNplkFFLwzAUhYMoOKcP_oMiIoLUJU3Tpi_CnLqJk002QX0JN2k6Mrt2Jh3ov7dzcwN9uhfux7nnHISOCb4kOCAt7RKGk5Be7KAGYQH2GWdkFzUwJtRPaPSyjw6cm2KMA4p5A111wbWGYCujcu39LJUpC1NMPChSb6RVWaRgv7yBnUBhlNfWtnRl7r0anafuEO1lkDt9tJ5N9Hx3O-70_P6ge99p930IQ1b5HCQPII6pkjLhMYQRC9NUYSAqlZJFECUR5nEKkmQsiBWlWjMdSFkjSsacNtHZSnduy4-FdpWYGad0nkOhy4UThPE6dbQET_6A03Jhi9qbqAMTSkmS1ND5ClJ1Fmd1JubWzOqUgmCxrFH81lijp2s9cAryzEKhjNvwlHBCyFLRX2HGVfpzcwb7LqKYxkyMhyPRw48310_Bg3jbyoJyW4f_vn8DBdWLXA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>230133199</pqid></control><display><type>article</type><title>Gas/Particle Partitioning and Secondary Organic Aerosol Yields</title><source>American Chemical Society Journals</source><creator>Odum, Jay R ; Hoffmann, Thorsten ; Bowman, Frank ; Collins, Don ; Flagan, Richard C ; Seinfeld, John H</creator><creatorcontrib>Odum, Jay R ; Hoffmann, Thorsten ; Bowman, Frank ; Collins, Don ; Flagan, Richard C ; Seinfeld, John H</creatorcontrib><description>Secondary organic aerosol (SOA) formation is considered in the framework of the gas/particle partitioning absorption model outlined by Pankow ( , ). Expressions for the fractional SOA yield (Y) are developed within this framework and shown to be a function of the organic aerosol mass concentration, M o. These expressions are applied to over 30 individual reactive organic gas (ROG) photooxidation smog chamber experiments. Analysis of the data from these experiments clearly shows that Y is a strong function of M o and that secondary organic aerosol formation is best described by a gas/particle partitioning absorption model. In addition to the 30 individual ROG experiments, three experiments were performed with ROG mixtures. The expressions developed for Y in terms of M o, used in conjunction with the overall yield data from the individual ROG experiments, are able to account for the M o generated in the ROG mixture experiments. This observation not only suggests that SOA yields for individual ROGs are additive but that smog chamber SOA yield data may be confidently extrapolated to the atmosphere in order to determine the important ambient sources of SOA in the environment.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/es950943+</identifier><identifier>CODEN: ESTHAG</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Absorption ; Aerosols ; Air pollution ; Applied sciences ; Atmospheric pollution ; Exact sciences and technology ; Gases ; Mathematical models ; Organic chemistry ; Organic compounds ; Oxidation ; Pollutants physicochemistry study: properties, effects, reactions, transport and distribution ; Pollution ; Q1</subject><ispartof>Environmental science & technology, 1996-08, Vol.30 (8), p.2580-2585</ispartof><rights>Copyright © 1996 American Chemical Society</rights><rights>1996 INIST-CNRS</rights><rights>Copyright American Chemical Society Aug 1996</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a445t-8ab82a773cbb987a4654ddc0a1cdbb56a696087dab1f527c33ee5e2bbc0acb783</citedby><cites>FETCH-LOGICAL-a445t-8ab82a773cbb987a4654ddc0a1cdbb56a696087dab1f527c33ee5e2bbc0acb783</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/es950943+$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/es950943+$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=3181119$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Odum, Jay R</creatorcontrib><creatorcontrib>Hoffmann, Thorsten</creatorcontrib><creatorcontrib>Bowman, Frank</creatorcontrib><creatorcontrib>Collins, Don</creatorcontrib><creatorcontrib>Flagan, Richard C</creatorcontrib><creatorcontrib>Seinfeld, John H</creatorcontrib><title>Gas/Particle Partitioning and Secondary Organic Aerosol Yields</title><title>Environmental science & technology</title><addtitle>Environ. Sci. Technol</addtitle><description>Secondary organic aerosol (SOA) formation is considered in the framework of the gas/particle partitioning absorption model outlined by Pankow ( , ). Expressions for the fractional SOA yield (Y) are developed within this framework and shown to be a function of the organic aerosol mass concentration, M o. These expressions are applied to over 30 individual reactive organic gas (ROG) photooxidation smog chamber experiments. Analysis of the data from these experiments clearly shows that Y is a strong function of M o and that secondary organic aerosol formation is best described by a gas/particle partitioning absorption model. In addition to the 30 individual ROG experiments, three experiments were performed with ROG mixtures. The expressions developed for Y in terms of M o, used in conjunction with the overall yield data from the individual ROG experiments, are able to account for the M o generated in the ROG mixture experiments. This observation not only suggests that SOA yields for individual ROGs are additive but that smog chamber SOA yield data may be confidently extrapolated to the atmosphere in order to determine the important ambient sources of SOA in the environment.</description><subject>Absorption</subject><subject>Aerosols</subject><subject>Air pollution</subject><subject>Applied sciences</subject><subject>Atmospheric pollution</subject><subject>Exact sciences and technology</subject><subject>Gases</subject><subject>Mathematical models</subject><subject>Organic chemistry</subject><subject>Organic compounds</subject><subject>Oxidation</subject><subject>Pollutants physicochemistry study: properties, effects, reactions, transport and distribution</subject><subject>Pollution</subject><subject>Q1</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><recordid>eNplkFFLwzAUhYMoOKcP_oMiIoLUJU3Tpi_CnLqJk002QX0JN2k6Mrt2Jh3ov7dzcwN9uhfux7nnHISOCb4kOCAt7RKGk5Be7KAGYQH2GWdkFzUwJtRPaPSyjw6cm2KMA4p5A111wbWGYCujcu39LJUpC1NMPChSb6RVWaRgv7yBnUBhlNfWtnRl7r0anafuEO1lkDt9tJ5N9Hx3O-70_P6ge99p930IQ1b5HCQPII6pkjLhMYQRC9NUYSAqlZJFECUR5nEKkmQsiBWlWjMdSFkjSsacNtHZSnduy4-FdpWYGad0nkOhy4UThPE6dbQET_6A03Jhi9qbqAMTSkmS1ND5ClJ1Fmd1JubWzOqUgmCxrFH81lijp2s9cAryzEKhjNvwlHBCyFLRX2HGVfpzcwb7LqKYxkyMhyPRw48310_Bg3jbyoJyW4f_vn8DBdWLXA</recordid><startdate>19960801</startdate><enddate>19960801</enddate><creator>Odum, Jay R</creator><creator>Hoffmann, Thorsten</creator><creator>Bowman, Frank</creator><creator>Collins, Don</creator><creator>Flagan, Richard C</creator><creator>Seinfeld, John H</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope></search><sort><creationdate>19960801</creationdate><title>Gas/Particle Partitioning and Secondary Organic Aerosol Yields</title><author>Odum, Jay R ; Hoffmann, Thorsten ; Bowman, Frank ; Collins, Don ; Flagan, Richard C ; Seinfeld, John H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a445t-8ab82a773cbb987a4654ddc0a1cdbb56a696087dab1f527c33ee5e2bbc0acb783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Absorption</topic><topic>Aerosols</topic><topic>Air pollution</topic><topic>Applied sciences</topic><topic>Atmospheric pollution</topic><topic>Exact sciences and technology</topic><topic>Gases</topic><topic>Mathematical models</topic><topic>Organic chemistry</topic><topic>Organic compounds</topic><topic>Oxidation</topic><topic>Pollutants physicochemistry study: properties, effects, reactions, transport and distribution</topic><topic>Pollution</topic><topic>Q1</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Odum, Jay R</creatorcontrib><creatorcontrib>Hoffmann, Thorsten</creatorcontrib><creatorcontrib>Bowman, Frank</creatorcontrib><creatorcontrib>Collins, Don</creatorcontrib><creatorcontrib>Flagan, Richard C</creatorcontrib><creatorcontrib>Seinfeld, John H</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Environmental science & technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Odum, Jay R</au><au>Hoffmann, Thorsten</au><au>Bowman, Frank</au><au>Collins, Don</au><au>Flagan, Richard C</au><au>Seinfeld, John H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gas/Particle Partitioning and Secondary Organic Aerosol Yields</atitle><jtitle>Environmental science & technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>1996-08-01</date><risdate>1996</risdate><volume>30</volume><issue>8</issue><spage>2580</spage><epage>2585</epage><pages>2580-2585</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><coden>ESTHAG</coden><abstract>Secondary organic aerosol (SOA) formation is considered in the framework of the gas/particle partitioning absorption model outlined by Pankow ( , ). Expressions for the fractional SOA yield (Y) are developed within this framework and shown to be a function of the organic aerosol mass concentration, M o. These expressions are applied to over 30 individual reactive organic gas (ROG) photooxidation smog chamber experiments. Analysis of the data from these experiments clearly shows that Y is a strong function of M o and that secondary organic aerosol formation is best described by a gas/particle partitioning absorption model. In addition to the 30 individual ROG experiments, three experiments were performed with ROG mixtures. The expressions developed for Y in terms of M o, used in conjunction with the overall yield data from the individual ROG experiments, are able to account for the M o generated in the ROG mixture experiments. This observation not only suggests that SOA yields for individual ROGs are additive but that smog chamber SOA yield data may be confidently extrapolated to the atmosphere in order to determine the important ambient sources of SOA in the environment.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><doi>10.1021/es950943+</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-936X |
ispartof | Environmental science & technology, 1996-08, Vol.30 (8), p.2580-2585 |
issn | 0013-936X 1520-5851 |
language | eng |
recordid | cdi_proquest_miscellaneous_15809468 |
source | American Chemical Society Journals |
subjects | Absorption Aerosols Air pollution Applied sciences Atmospheric pollution Exact sciences and technology Gases Mathematical models Organic chemistry Organic compounds Oxidation Pollutants physicochemistry study: properties, effects, reactions, transport and distribution Pollution Q1 |
title | Gas/Particle Partitioning and Secondary Organic Aerosol Yields |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T04%3A43%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gas/Particle%20Partitioning%20and%20Secondary%20Organic%20Aerosol%20Yields&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Odum,%20Jay%20R&rft.date=1996-08-01&rft.volume=30&rft.issue=8&rft.spage=2580&rft.epage=2585&rft.pages=2580-2585&rft.issn=0013-936X&rft.eissn=1520-5851&rft.coden=ESTHAG&rft_id=info:doi/10.1021/es950943+&rft_dat=%3Cproquest_cross%3E254399%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=230133199&rft_id=info:pmid/&rfr_iscdi=true |